
ACTUS: The algorithmic representation of financial contracts

VERSION v1.0-RC-99cff79-2018-11-01

NILS BUNDI
ACTUS FINANCIAL RESEARCH FOUNDATION

INFO@ACTUSFRF.ORG

About this document

This document provides the technical specifications of the Algorithmic Contract Types Unified Standards (ACTUS). It
is developed, maintained, and released by the ACTUS Financial Research Foundation and provided by the same to the
ACTUS Users Association under the terms of the open source license with which the document is published from time
to time.

Versions

This document is versioned according to the following pattern: [major].[minor]-[rc]-[revision]-[date] where [major] and
[minor] are integers marking major and minor release, [rc] is an optional label ”RC” indicating whether a certain
[major].[minor]-release is in candidate-status, [revision] indicates the current revision in form of the respective git commit
hash (short form), and [date] gives the respective date of the revision. Releases are recorded in the following table.

Date Version Description

to be re-
leased

1.0 First version of the technical specification document containing specifications for the ”ini-
tial” 18 contracts.

Acknowledgements

We would like to acknowledge all members of the ACTUS Users Association who contribute a lot of their time and
expertise to the development, review, and testing of the ACTUS standards, in general, and this document, in particular.
Without their valuable contributions the ACTUS standards would not exist in the form as they currently do.

1

ACTUS: The algorithmic representation of financial contracts 2

Contents

About this document 1
Versions 1
Acknowledgements 1
1. Introduction 3
2. Financial contract taxonomy 3
3. Notations 6
3.1. Contract Attributes 6
3.2. ∅-Operator 6
3.3. t0-Time 6
3.4. State Variables 6
3.5. Contract Events 6
3.6. State Transition Functions 6
3.7. Payoff Functions 6
3.8. Date/Time 7
3.9. Event Sequence 7
3.10. Contract Lifetime 7
4. Utility Functions 7
4.1. Schedule 7
4.2. Array Schedule 7
4.3. End Of Month Shift Convention 7
4.4. Business Day Shift Convention 7
4.5. Business Day Calendar 8
4.6. Year Fraction Convention 8
4.7. Contract Role Sign Convention 8
4.8. Contract Default Convention 8
4.9. Annuity Amount Function 9
5. Contract State Variables 9
6. Contract Event Types 9
7. Risk Factor Observer 10
8. Child Contract Observer 10
9. Contract Types 11
9.1. PAM: Principal At Maturity 11
9.2. LAM: Linear Amortizer 14
9.3. LAX: Exotic Linear Amortizer 17
9.4. NAM: Negative Amortizer 20
9.5. ANN: Annuity 21
9.6. CLM: Call Money 22
9.7. UMP: Undefined Maturity Profile 23
9.8. CSH: Cash 24
9.9. STK: Stock 24
9.10. COM: Commodity 25
9.11. FXOUT: Foreign Exchange Outright 25
9.12. SWPPV: Plain Vanilla Interest Rate Swap 26
9.13. SWAPS: Swap 27
9.14. CAPFL: Cap-Floor 28
9.15. OPTNS: Option 29
9.16. FUTUR: Future 30
9.17. CEG: Credit Enhancement Guarantee 31
9.18. CEC: Credit Enhancement Collateral 32

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 3

1. Introduction

Financial contracts are legal agreements between two
(or more) counterparties on the exchange of future cash
flows. Such legal agreements are defined unambiguously
by means of a set of contractual terms and logic. As a re-
sult, financial contracts can be described mathematically
and represented digitally as machine readable algorithms.
The benefits of representing financial contracts digitally
are manifold; Traditionally, transaction processing has
been a field in which tremendous efficiency gains could
be realized by the introduction of machines and machine
readable contracts. Or, financial analytics by nature of the
domain builds on the availability of computable represen-
tations of these agreements where for reasons of tractabil-
ity often times analytical approximations are used. Re-
cently, the rise of distributed ledger and blockchain tech-
nologies and the various use cases for smart contracts has
opened up new possibilities for natively digital financial
contracts.
In general, the exchange of cash flows between counter-
parties follows certain patterns. A typical cash flow ex-
change pattern is a bullet loan contract where principal is
exchanged initially followed by cyclical interest payments
and the principal is paid back (in a lump sum) at ma-
turity of the contract. While the principal payments are
fixed a variety of flavours exist for how the cyclical interest
payments are determined and/or paid. As an example, in-
terest payments may be due monthly, annually or accord-
ing to arbitrary periods, they may be determined based
on fixed or variable rates, different year fraction calcula-
tion methods may be used or there might be no interest
due at all. Another popular pattern is that of amortiz-
ing loans for which, as opposed to bullet loans, princi-
pal may be paid out and paid back in portions of fixed
or variable amounts and according to cyclical or custom
schedules. Other types of financial contracts include but
are not limited to shares, forwards, options, swaps, credit
enhancements, repurchase agreements, securitization, etc.
By focusing on the main distinguishing features, ACTUS
describes the vast majority of all financial contracts with
a set of about 32 generalized cash flow exchange patterns
or Contract Types (CTs), respectively.
On the other hand, the legal agreements in financial con-
tracts represent purely deterministic logic or the mechan-
ics of finance, in other words. That is, a financial contract
defines a fixed set of rules and conditions under which,
given any external variables, the cash flow obligations can
be determined unambiguously. For instance, in a fixed rate
loan the cash flow obligations are defined explicitly. At the

same time, a variable rate loan defines explicitly the rules
under which the variable rate is fixed going forward such
that the cash flow obligations can be derived unambigu-
ously going forward. The same holds true for derivative
contracts where the cash flow obligations arise given some
underlying reference instrument. Similarly, for analytical
purposes, given some assumption of the evolution of this
reference instrument the cash flow obligations conditioned
on this assumption can be derived unabiguously.
The properties of financial contracts described above build
the foundation for a standardized, deterministic algorith-
mic description of the cash flow obligations arising from
such agreements. Thereby, this description is technology
agnostic and supports all use cases necessary for this very
standard to be used throughout all finance functions from
front office to back office and covering pricing, deal orig-
ination, transaction processing, as well as analytics, in
general, and liquidity projections, valuation, P&L calcu-
lations and projections, and risk measurement and aggre-
gation, in particular. Furthermore, this standard builds a
formidable basis for distributed ledger-powered, natively
digital financial state machines or smart contracts, in
other words.

2. Financial contract taxonomy

Below an overview of the ACTUS Contract Types taxon-
omy.

Figure 1. An overview of the ACTUS
Contract Types Taxonomy.

Table 1 provides further details on the ACTUS Taxon-
omy including the real-world financial contracts covered
through the various ACTUS Contract Types.

Family Class Type Description Covered contracts

Basic
CT

Maturity PAM: Prin-
cipal at Ma-
turity

Principal payment fully at Initial Exchange Date
(IED) and repaid at Maturity Date (MD). Fixed and
variable rates.

All kind of bonds, term
deposits, bullet loans
and mortgages etc.

ANN:
Annuity

Principal payment fully at IED and interest plus prin-
cipal repaid periodically in constant amounts till MD.
If variable rate, total amount for interest and principal
is recalculated to be fully matured at MD.

Classical level payment
mortgages, leasing con-
tracts etc.

Continued on next page

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 4

Continued from previous page

Family Class Type Description Covered contracts

NAM: Neg-
ative Amor-
tizer

Similar as ANN. However when resetting rate, total
amount (interest plus principal) stay constant. MD
shifts. Only variable rates.

Special class of ARMs
(adjustable rate mort-
gages), Certain loans.

LAM:
Linear
Amortizer

Principal payment fully at IED. Principal repaid pe-
riodically in constant amounts till MD. Interest gets
reduced accordingly. If variable rate, only interest pay-
ment is recalculated. Fixed and variable rates.

Many amortizing loans

ANX:
Exotic
Annuity

Exotic version of ANN However step ups with respect
to (i) Principal, (ii) Interest rates are possible. Highly
flexible to match totally irregular principal payments.
Principal can also be paid out in steps.

A special version of
this kind are teaser
rate loans and mort-
gages with annuity fea-
tures

LAX: Ex-
otic Linear
Amortizer

Exotic version of LAM. However step ups with respect
to (i) Principal, (ii) Interest rates are possible. Highly
flexible to match totally irregular principal payments.
Principal can also be paid out in steps.

A special version of
this kind are teaser rate
loans and mortgages

NAX:
Exotic
Negative
Amortizer

Exotic version of NAM However step ups with respect
to (i) Principal, (ii) Interest rates are possible. Highly
flexible to match totally irregular principal payments.
Principal can also be paid out in steps.

A special version of
this kind are teaser
rate loans and mort-
gages with variable MD

CLM: Call
Money

Loans that are rolled over as long as they are not
called. Once called it has to be paid back after the
stipulated notice period.

Interbank loans with
call features

PBN: Per-
petual
Bonds

Bonds without any maturity date. Interest is paid into
eternity if is not terminated.

Consoles, war loans

Non-
Maturity

UMP: Un-
defined Ma-
turity Pro-
file

Principal paid in and out at any point in time without
prefixed schedule. Interest calculated on outstanding
and capitalized periodically. Needs link to a behavioral
function describing expected flows.

Saving products of all
kind, current accounts.
In some countries even
variable rate mortgages
can be represented with
this CT

CSH: Cash Cash or cash equivalent position Cash, deposits at cen-
tral bank

STK: Stock Any instrument which is bought at a certain amount
(market price normally) and then follows an index.

All straight stocks

COM:
Commodity

This is not a financial contract in its proper sense.
However it tracks movements of commodities such as
oil, gas or even houses. Such commodities can serve as
underlyings of commodity futures, guarantees or sim-
ply asset positions.

Oil, gas, electricity,
houses etc.

Combined Swap
and
Option
like

SWAPS:
Swap

Exchange of two basic CTs (PAM, ANN etc.). Nor-
mally one is fixed, the other variable. However all
variants possible including different currencies for cross
currency swaps, basic swaps or even different principal
exchange programs.

All kind of swaps. The
variety is defined by the
underlying CTs which
currently are PAM and
ANN in all tis flavors.
With each new basic CT
the variety rises

SWPPV:
Plain
Vanilla
Swap

Plain vanilla swaps where the underlying is always a
PAM and one leg is fixed, the other variable. Plain
vanilla cross currency swaps also covered.

More than 90% of all in-
terest rate swaps follow
this simple pattern.

FXOUT:
Foreign
Ex-change
Outright

Two parties agree to exchange two fixed cash flows in
different currencies at a certain point in time in future.

Any FX-outright trans-
action. This is also
the underlying of FX-
options and FX futures

CAPFL:
Cap Floors

Interest rate option expressed in a maximum or mini-
mum interest rate

Caps and Floor options

Continued on next page

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 5

Continued from previous page

Family Class Type Description Covered contracts

CFXOP:
Exotic Cap
Floor

Exotic variants of caps and floors

Securiti-
zation

SCRMR:
Securitized
Instru-
ments
Market
Risk

Instruments bundled and traded in tranches without
any specific credit risk feature

MBS, ABS, Principal
only, Interest only in-
struments

SCRCR:
Securitized
instrument
Credit Risk
Feature

Instruments bundled and traded in tranches that in-
clude specific credit risk feature

CDOs

SymmetricMRGNG A generic margining contract governing the agreement
of margining usually present at central clearing houses

FUTUR:
Future

Keeps track of value changes for any basic CT as un-
derlying (PAM, ANN etc. but also FXOUT, STK,
COM). Handles margining calls.

Standard interest rate,
FX, stock and commod-
ity futures.

Options OPTNS:
Option

Calculates straight option pay-off for any basic CT as
underlying (PAM, ANN etc.) but also SWAPS, FX-
OUT, STK and COM. Single, periodic and continuous
strike is supported.

European, American
and Bermudan options
with Interest rate, FX
and stock futures as
underlying instruments

BNDCP:
Callable or
puttable
maturity
contract

Bonds with a call or put option. If option is exercised,
underlying bond ceases to exist.

Callable and puttable
bonds or loans

BNDWR:
Bond with
warrant

Bonds with a warrant. If option is exercised, underly-
ing bond continues to exist.

Warrants

IRXOP:
Exotic In-
terest Rate
Option

Exotic interest rate options

STXOP:
Stock Op-
tion

Exotic stock options

CMXOP:
Exotic
Commodity
Option

Exotic commodity options

FXXOP:
Exotic FX
Option

Exotic FX options

Credit
Risk

CEG:
Guarantees

Guarantee is a credit enhancement contract. It creates
a relationship between a guarantor, an obligee and a
debtor, moving the exposure from the debtor to the
guarantor.

Personal guarantee.
Government guarantee.
Underlyings of CDOs.

CEC: Col-
lateral

Collateral is a credit enhancement contract. It creates
a relationship between a collateral an obligee and a
debtor, covering the exposure from the debtor with
the collateral.

Mortgages include a col-
lateral contract. Any
coverage with financial
or physical collateral

CDSWP:
Credit
Default
Swap

All sorts of credit default swaps

Continued on next page

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 6

Continued from previous page

Family Class Type Description Covered contracts

CRSWP:
Total Re-
turn Swap

All sorts of total return swaps

CLNTE:
Credit
Linked
Note

All sorts of credit linked notes

Table 1: Financial contract taxonomy

3. Notations

3.1. Contract Attributes. Contract Attributes (at-
tributes) represent the legal contractual terms that define
the exchange of cash-flows of a financial contract. At-
tributes are introduced by the ACTUS data standard and
described in the ACTUS Data Dictionary (DD). Different
data types exist and are defined in the DD. In partic-
ular, scalar-type and vector-type attributes are defined.
Throughout this document the attribute short name is
used according to the DD. Further, vector-type attributes
may be indexed with a subscript indicating that a specific
vector-element is referenced.

Example 1 (Contract Attribute). The ACTUS attribute
Initial Exchange Date is represented in short form IED.

Example 2 (Element of Vector-Type Attribute). The
ACTUS attribute Array Cycle Anchor Date of Principal
Redemption is a vector-type attribute and represented as
ARPRANX. The i-th element of the vector is referenced by
ARPRANXi.

3.2. ∅-Operator. The ∅-operator is used to indicate
that a certain property is undefined or, in other words,
that no value has been assigned to the respective property.
In particular, for optional contract attributes it means
that the attribute is not defined and for schedule times
(see section 4.1) it means that the respective schedule is
empty, i.e. no schedule time defined.

Example 3 (Undefined Attribute). IPANX = ∅ indicates
that attribute IPANX is undefined.

Example 4 (Empty Schedule). ~tIP = ∅ means the same

as ~tIP = {}, with {} the empty set, and states that the IP

schedule ~tIP does not contain a schedule time.

3.3. t0-Time. t0 marks the time as per which the state
of a contract is represented in form of the respective set
of attributes. Status Date SD itself is an attribute of the
contract. In general, from the contractual logic we are
able to derive any contractual events and contract states
for any time t > t0.

3.4. State Variables. State Variables describe the in-
ner state of a financial contract at a certain point in
time t during its lifetime such as (outstanding) Nominal
Value, applicable Interest Rate, or the contract perfor-
mance through Contract Status. State Variables are writ-
ten in the short form as defined in table 3 with first letter
capitalized, printed in bold, and indexed with time.

Example 5 (State Variables). Nvlt refers to the State
Variable Nominal Value observed at per time t.

3.5. Contract Events. A contract event ekt refers to
any contractually scheduled or un-scheduled event at a
certain time t and of a certain type k. Contract events
mark specific points in time during the lifetime of a fi-
nancial contract at which a cash flow is being exchanged
(see section 3.7) or the State Variables of the contract are
being updated (see section 3.6). Contract Events types k
are written in the short form as defined in table 4.

As an event always has an associated event time t and
payoff c ∈ R we define two operators allowing to retrieve
these quantities for any single event ekt or set of events
{ekt , ejs, ...} as follows;

τ(x) =

{
t if x = ekt

{t, s, ...} else if x = {ekt , ejs, ...}

f(x) =

{
c if x = ekt

{c1, c2, ...} else if x = {ekt , ejs, ...}
with c1 = f(ekt), c2 = f(ejs),

Example 6 (Contract Events). The Initial Exchange
Date event with event time s is written as eIEDs with
τ(eIEDs) = s and f(eIEDs) = c where for any contract
type CT c = POF IED CT().

3.6. State Transition Functions. State Transition
Functions (STF) define how the State Variables are be-
ing updated when a certain Contract Event ekt applies
from a pre-event (i.e. pre-time t) state indexed t− to a
post-event (i.e. post-time t) state indexed t+. These func-
tions are specific to a certain Contract Event and Contract
Type. STFs are written according to the following pat-
tern STF [event type] [contract type]() where [event type]
and [contract type] refer to the respective event type and
contract type to which the STF belongs.

Example 7 (State Transition Functions). The STF
for an IP event and PAM contract is written as
STF IP PAM() and maps e.g. state variable Nominal Ac-
crued from a pre-event state Nact− to post-event state
Nact+ .

3.7. Payoff Functions. Payoff Functions (POF) define
how the cash flow c ∈ R for a certain Contract Event ekt is
being derived from current State Variables and Contract
Attributes. If necessary, the resulting cash flow can be in-
dexed with the event time ct. These functions are specific
to a certain Contract Event and Contract Type. POFs
are written according to the following pattern POF [event
type] [contract type]() where [event type] and [contract
type] refer to the respective event type and contract type
to which the STF belongs.

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 7

Example 8 (Payoff Functions). The POF for an IP event
eIPt and PAM contract is written as POF IP PAM() with
f(eIPt) = POF IP PAM().

3.8. Date/Time. ACTUS builds on the ISO 8601
date/time format. Hence, dates are generally expressed in
the following format: [YYYY]-[MM]-[DD]T[hh]:[mm]:[ss].
Time zone information is currently not supported.
A special case is midnight. ISO 8601 recognizes both times
00:00:00 and 24:00:00 each referring to midnight. Yet,
while 24:00:00 refers to the end of one day, 00:00:00 refers
to the beginning of the following day. In ACTUS the in-
terpretation is the same why the time period (measured in
any time unit) between the two points in time will always
be zero.
For brevity, we use the term time for a specific date-time
variable and in particular abbreviation Tev for the date of
a Contract Event.

3.9. Event Sequence. Contract Events of different
types may occur at the same time, i.e. exactly the same
point in time. In this case, the sequence of evaluating
their State Transition and Payoff Functions is decisive for
the resulting cash flows and state updates. The Event
Sequence given for all events in table 4 defines the order
in which these functions are evaluated for the respective
event types.

3.10. Contract Lifetime. The lifetime of an ACTUS
contract is the time period of its existence from the per-
spective of the analyzing user. For every point in time
during its lifetime, an ACTUS contract can be analyzed
in terms of current State Variables and future cash flows.

The lifetime of a contract starts with its SD and ends with
min(MD,AMD,PR∗, STD, TD, tmax).

Note that PR∗ refers to the PR event of a maturity con-
tract after which Nvl=0.0 (i.e. at which the remaining
outstanding principal is redeemed). Further, MD, AMD, and
PR(Nvl=0.0) in the definition above do only apply for
maturity contracts but have to be considered infinity in
all other cases. Similarly, STD only applies for certain con-
tracts and is considered infinity for all others. Finally,
tmax is a parameter that may be used to restrict the con-
sidered lifetime in an analysis. In particular, this param-
eter is used for contracts that do not have a natural end
to their lifetime such as STK.

4. Utility Functions

4.1. Schedule. A schedule is a function S mapping times
s, T with s < T and cycle c onto a sequence ~t of cyclic
times

S(s, c, T) = ~t =


{} if s = ∅ ∧ T = ∅
s else if T = ∅
(s, T) else if c = ∅
(s = t1, ..., tn = T) else

with ti < ti+1, i = 1, 2, While the schedule function
can be used to create arbitrary sequences of times, it is
usually used to generate sequences of cyclic events ~tk of a
certain type k, e.g. k = IP for interest payment events
(cf. table 4) and the following build inputs to the function

s = kANX with kANX attribute cycle anchor date of
event type k

c = kCL with kCL event type k’s schedule cycle
T = MD with MD the contract’s maturity

Thereby, cycles kCL have format NPS where

N is an integer
P is a time period unit (D=Day, W=Week,

M=Month, Q=Quarter, H=Half Year, Y=Year)
S is a stub information (+=long last stub, −=short

last stub)

Further, the last stub is defined as follows

if tn−1 + c = T ∨ S =’-’ then no stub correction
applies

else tn is removed from the schedule

The sequence of schedule times ~tk may also be influenced
by the EOF and BDC conventions and the full function syn-
tax becomes S(s, c, T, EOMC, BDC). Due to such effects the
sequence of schedule times can be non-equidistant or, in
other words, tki − tki−1 6= tkj − tkj−1, i 6= j.

Note that for brevity we will omit the EOMC and BDC func-
tion arguments throughout this document.

4.2. Array Schedule. Array Schedules are defined by
vector-valued inputs ~s = (s0, s1, ..., sm) and ~c =
(c0, c1, ..., cm) to the regular schedule function

S(~s,~c, T) = (S(s0, c0, s1 − c0),

S(s1, c1, s2 − c1), ..., S(sm, cm, T))

Hence, array schedules are a generalization for regular
schedules which coincide for m = 1. In accordance with
regular schedules EOMC and BDC conventions also apply
here.

4.3. End Of Month Shift Convention. For schedules
~tk starting at time s which marks the end of a month
with 30 or less days, e.g. April 30, and with a cycle c
being a multiple of 1M- attribute EOM defines whether the
schedule times are to fall on the 30th of all months (same
day) or the 31st (end of month).

More specifically, EOM has an effect on a schedule ~tk only
if:

s is the last day of a month with less than 31 days
(Feb, April etc.)

c = NPS with P ∈ (M,Q,HorY)

As per the DD EOM can take one of the following values:

EOM (EndOfMonth): times ti, i = 1, 2, ..., n − 1 are
moved to the end of the respective months

SD (SameDay): times ti, i = 1, 2, ..., n− 1 remain un-
changed except in February, where it will go to the
last day if the day of month of time s is higher
than the number of days of February

4.4. Business Day Shift Convention. In general, con-
tract events are scheduled for business days only. There-
fore, the BDC convention defines how scheduled times
ti, i = 1, 2, ..., n− 1 are shifted in case they fall on a non-
business day:

NULL: No shift

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 8

SCF: Shift/Calculate following: The event is shifted to
the following non working day. Calculation of the
event happens after the shift

SCMF: Shift/Calculate modified following: The event is
shifted to the following non working day. How-
ever, if the following day happens to fall into the
next month, then take preceeding non-working
day. Calculation of the event happens after the
shift

CSF: Calculate/Shift following: Same like SCF however
calculation of the event happens before the shift

CSMF: Calculate/Shift modified following: Same like
SCMF however calculation of the event happens
before the shift

SCP: Shift/Calculate preceding: The event is shifted to
the last preceding non working day. Calculation
of the event happens after the shift

SCMP: Shift/Calculate modified preceding: The event is
shifted to the last preceding non working day.
However, if the preceding day happens to fall into
the previous month, then take next non-working
day. Calculation of the event happens after the
shift

CSP: Calculate/Shift preceding: Same like SCP how-
ever calculation of the event happens before the
shift

CSMP: Calculate/Shift modified preceding: Same like
SCMP however calculation of the event happens
before the shift

4.5. Business Day Calendar. Whether a specific day is
a business day (cf. previous section) is defined by attribute
CLDR. Such conventions generally depend on regional offi-
cial holiday calendars. The Business Day Function inter-
face allows determining for some CLDR whether any time t
is a business day or not

B : t 7→ {true, false}
where true indicates that t is a business day and false
that it is a holiday.

Example 9. Two standard CLDR implementations are the
following

• NoHoliday (default): every calendar day is a busi-
ness day

• MondayToFriday: all weekdays Monday, Tues-
day, Wednesday, Thursday, and Friday are busi-
ness days

4.6. Year Fraction Convention. Interest income and
other calculations are based on per annum interest rates.
Therefore, the year-fraction function interface Y is used
to calculate the fraction of a year between any two times
s and t with t > s for which e.g. an (per annum) interest
rate applies according to some day count convention DCC

Y : s, t, DCC 7→ R
Note, the year fraction function interface only defines the
structure of year fraction functions but not an actual im-
plementation thereof, or the respective DCC, respectively.
Therefore, any DCC can be implemented according to the
interface above supporting user-defined year fraction func-
tions.

For brevity we will omit the DCC function argument wher-
ever this does not lead to confusion.

4.7. Contract Role Sign Convention. The two coun-
terparties to a financial contract are defined through
attributes LEIRC and LEICP. The first is the party initially
creating the contract and the second is the counterparty,
respectively. Thereby, both LEIRC/LEICP can take any
role in the contract or, more specifically, they can be
the lender or borrower in a loan (PAM), fixed receiver or
payer in an interest rate swap (SWAPS), etc.

The role of the LEIRC is defined through attribute CNTRL.
The role of LEICP is derived as the opposite side to the
contract. Apart from CNTRL the attributes are neutral to
the role of LEIRC (or LEICP).

On the other hand, contractual cash flows generated by
the POFs and certain state variables are role-sensitive.
That is, from the perspective of the LEIRC these quanti-
ties represent either claims or obligations. Contract Role
Sign function R maps the CNTRL attribute into +1 indi-
cating a claim or −1 indicating an obligation

R : CNTRL→ {−1,+1}
When multiplying with a cash flow x the Contract Role
Sign function thereby defines the direction of that flow:

x > 0: x flows from LEICP to LEIRC

x < 0: x flows from LEIRC to LEICP

Table 2 defines the domain of the Contract Role Sign func-
tion, i.e. the range of attribute CNTRL, with meaning and
Contract Role Sign to which the function maps.

Value Meaning R

RPA Real position asset +1

RPL Real position liability -1

CLO Role of a collateral +1

CNO Role of a close-out-netting +1

COL Role of an underlying to a
collateral

+1

LG Long position +1

ST Short position -1

BUY Protection buyer +1

SEL Protection seller -1

RFL Receive first leg +1

PFL Pay first leg -1

RF Receive fix leg +1

PF Pay fix leg -1

Table 2. Contract Role definitions.

4.8. Contract Default Convention. Performance of a
contract indicates whether as per a certain time all parties
involved adhere to their obligations arising from the con-
tract. Attribute CTS captures a contract’s performance
as per t0. For any time t > t0 and depending on the
behavior of the parties involved the contract can migrate
into different contract (performance) statuses from ’per-
forming’ to ’default’. State variable Prft (cf. table 3)
captures these dynamics and the performance as per any
time t > t0.

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 9

The Contract Default Convention is a function D that
maps the Prft state variable into +1 indicating that the
contract is performing or 0 which reflext default and, from
an analytical perspective, means that future cash flows
cancel out :

D(Prft) =

{
1 if Prft 6= ’D’

0 else

4.9. Annuity Amount Function. In an Annuity con-
tract (ANN) the annuity amount is paid regularly from the
borrower to the lender. Thereby, the annuity amount is
comprised of a principal repayment portion and an interest
portion and and dimensioned such that the total nominal
amount n at time t is fully repaid at maturity T of the
annuity. The Annuity Amount function A(,c,o,m,p)utes
the annuity amount as follows

A(s, T, n, a, r) = (n+a)

∏m−1
i=1 1 + rY (ti, ti+1,)

1 +
∑m−1
i=1

∏m−1
j=i 1 + rY (tj , tj+1)

with a the accrued interest as per time s, r the ac-
tual interest rate, ti, i = 1, 2, ...,m the schedule times
inf t, t ∈ ~tPR ∧ t > s, m the number of times ti, and
~tPR the PR-event schedule times of the Annuity contract
as described in section 9.5.

5. Contract State Variables

Driven by Contract Events (see section 3.5) certain con-
tractual dimensions, state variables, of financial contracts
may change during the lifetime of a financial contract.
Thereby, the set of State Variables varies for different
CTs. Table 3 represents the set of all covered State Vari-
ables throughout the universe of CTs.

By definition, State Variables are updated through Con-
tract Events only. The value of State Variables always
shows the state of the contract after the respective Con-
tract Event.

Name Abbrv.Explanation

Performance Prft Contract performance

Last Event
Date

Ledt The date of the most recent Con-
tract Event

Nominal
Value

Nvlt The outstanding nominal value

Secondary
Nominal
Value

Nv2t The outstanding nominal value
of the second leg

Nominal Rate Nrtt The applicable nominal rate

Nominal Ac-
crued

Nact The current value of nominal ac-
crued interest at the Nominal
Rate

Interest Cal-
culation Base

Icbt The basis at which interest is
being accrued if different from
Nvlt

Notional Scal-
ing Multiplier

Nsct The multiplier being applied to
Notional/Principal related cash-
flows

Interest Scal-
ing Multiplier

Isct The multiplier being applied to
Interest related cash-flows

Next Prin-
cipal Re-
demption
Payment

Nprt The value at which Nvlt is being
repaid. This may be including or
excluding of interest depending
on the instrument

Payoff at Set-
tlement

Post The payoff of the contract if
fixed at time t. If evaluated dur-
ing the lifetime of the contract
this quantity gives a hypotheti-
cal payoff (e.g. for an OPTNS
contract it defines whether the
option is in-the-money or not).

Table 3. State variables

6. Contract Event Types

An overview and description of various event types can be
found in table 4.

Type Name Explanation Seq.

IED Initial Exchange Date Scheduled date of first principal event, start of accrual calcu-
lation

1

IPCI Interest Capitalization Scheduled interest payment which is capitalized instead of
paid out

2

IP Interest Payment Scheduled interest payment 3

FP Fee Payment Scheduled fee payment 4

PR Principal Redemption Scheduled principal redemption payment 5

PI Principal Increase Scheduled principal increase payments 6

PRF Principal Payment Amount Fixing Scheduled re-fixing of principal payment (PR or PI) amount 7

PY Penalty Payment Payment of a penalty (e.g. due to early repayment of principal
outstanding)

8

PP Principal Prepayment Unscheduled (early) repayment of principal outstanding 9

CD Credit Default Credit event of counterparty to a contract 10

RRF Rate Reset Fixed Scheduled rate reset event where new rate is already fixed 11

RR Rate Reset Variable Scheduled rate reset event where new rate is fixed at event
time

12

DV Dividend Payment Scheduled (e.g. announced) dividend payment 13

PRD Purchase Date Purchase date of a contract bought in the secondary market 14

MR Margin Call Date Scheduled margin call event 15

TD Termination Date Sell date of a contract sold in the secondary market 16

Continued on next page

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 10

Continued from previous page

Type Name Explanation Seq.

SC Scaling Index Revision Scheduled re-fixing of a scaling index 17

IPCB Interest Payment Calculation Base Scheduled update to the calculation base for IP accruing 18

XD Execution Date Scheduled or unscheduled execution of e.g. an OPTNS or
FUTUR contract

19

STD Settlement Date Date when payment for derivatives is settled 20

MD Maturity Date Scheduled maturity or expiry of a contract 21

AD Analysis Event Retrieves current contract states without alter these 22

Table 4: Contract Events Definitions.

7. Risk Factor Observer

The payoff of financial contracts always depends on the
context in which it is evaluated and which is comprised
of the following dimensions; counterparties, markets, and
behavioral factors. We refer to these as the risk factors to
which financial contracts are exposed to. This indicates
that these factors are source of uncertainty because finan-
cial contracts only reference the factors but their dynamics
is outside the control of any contractual agreement. Thus,
such factors have to be observed and their changing states
accounted for when evaluating the payoff of financial con-
tracts. Therefore, we consider a standardized interface
Oo(i, t, S,M) that allows for observing ; (1) the state of a
certain risk factor i at any time t if o =’rf’

Orf : i, t, S,M 7→ R
and (2) contractual but non-scheduled events if o =’ev’

Oev : i, t, S,M 7→ {ekt , els, ...}
The parameters to the Risk Factor Observer interface are
as follows:

i : the identifier of the risk factor observed
t : the time for which the risk factors state should

be evaluated
S : the inner states of the contract at time t
M : the contract terms of the contract as per time t

Note that the observer interface only defines the structure
of an actual observer function but not the actual imple-
mentation. Thus, the interface allows for user-defined im-
plementations of observer functions allowing e.g. for rep-
resenting arbitrary assumptions on the evolution of future
risk factor states which is key for any type of forward-
looking analysis.

Example 10 (’rf’-Observer). The market-driven 3-month
USD-Libor reference rate used as the variable rate in
a variable rate loan contract is observed at any time t
through Orf (MarketObjectCodeRateReset, t).

Example 11 (’rf’-Observer). Unscheduled (pre-) repay-
ments of outstanding notional in a mortgage contract is
observed at any time t through Oev(CID, t).

For brevity we will omit the S and M function arguments
wherever this does not lead to confusion.

8. Child Contract Observer

The payoff of certain contracts, i.e. of Combined Contracts
according to the taxonomy in 1, is derived from certain
quantities of child contracts. Often times, such contracts
are referred to as underlying instruments or simply under-
lyers as they build the basis for the payoff of the parent

contract. Therefore, we consider a standardized interface
Uo that allows for observing on the parent level; (1) all
future events, w.r.t. time t, if o =’ev’

Uev : i, t, a 7→ {ekv , elw, ...}
with v, w > t and event types k, l according to the sched-
ule of the child contract, (2) a certain state variable x if
o =’sv’

Usv : i, t, x, a 7→ R,
or (3) a particular contract attribute x of the child con-
tract if o =’ca’

Uca : i, x 7→ y

with y a variable of value type of the respective attribute
as per DD.

The parameters to the Child Contract Observer interface
are as follows:

i : the identifier of the child contract observed
t : for o ∈ {ev,sv} the time for which the respective

quantity should be evaluated
x : for o ∈ {sv,ca} the quantity to be evaluated
a : for o ∈ {ev,sv} a set of contract attributes to

which the evaluated quantity should be condi-
tioned

Note that the observer interface only defines the structure
of an actual observer function but not the actual imple-
mentation. Thus, the interface allows for user-defined im-
plementations of observer functions allowing e.g. for using
arbitrary data structures.

Example 12 (’ev’-Observer). The future events, w.r.t.
time t, of the first leg (i.e. child contract identified by
FirstLeg) of a SWAPS contract with CNTRL = PFL
(i.e. pay first leg) can be evaluated as Uev(FirstLeg, t |
{CNTRL = RPL}).

Example 13 (’sv’-Observer). The current state, w.r.t.
time t, of state variable Nvl of the first leg (i.e. child con-
tract identified by FirstLeg) of a SWAPS contract with
CNTRL=RFL (i.e. receive first leg) can be evaluated as
Usv(FirstLeg, t,Nvl | {CNTRL = RPA}).

Example 14 (’ca’-Observer). The contract attribute MOC

of the child contract Child (i.e. child contract identified
by Child) of an OPTNS contract can be evaluated as
Uca(Child, MOC).

For brevity we will omit the x and a function arguments
wherever this does not lead to confusion.

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 11

9. Contract Types

9.1. PAM: Principal At Maturity.

PAM: Contract Schedule

Event Schedule Comments

AD ~tAD = (t0, t1, ..., tn) With ti, i = 1, 2, ... a custom input

IED tIED = IED

PR tPR = Tmdt0

PP ~tPP =

{
∅ if PPEF = ’N’

(~u,~v) else

where
~u = S(s, OPCL, TMD)

~v = Orf (PPMO, t)

with

s =


∅ if OPANX = ∅ ∧ OPCL = ∅
IED + OPCL else if OPANX = ∅
OPANX else

PY ~tPY =

{
∅ if PYTP = ’O’

~tPP else

FP ~tFP =

{
∅ if FER = ∅ ∨ FER = 0

S(s, FPCL, TMD) else
with

s =


∅ if FPANX = ∅ ∧ FPCL = ∅
IED + FPCL else if FPANX = ∅
FPANX else

PRD tPRD = PRD

TD tTD = TD

IP ~tIP =

{
∅ if IPNR = ’O’

S(s, IPCL, TMD) else
with

s =


∅ if IPANX = ∅ ∧ IPCL = ∅
IPCED else if IPCED 6= ∅
IED + IPCL else if IPANX = ∅
IPANX else

IPCI ~tIPCI =

{
∅ if IPCED = ∅
S(s, IPCL, IPCED) else

with

s =


∅ if IPANX = ∅ ∧ IPCL = ∅
IED + IPCL else if IPANX = ∅
IPANX else

RR ~tRR =


∅ if RRANX = ∅ ∧ RRCL = ∅
~t \ tRRY else ifRRNXT 6= ∅
~t else

where ~t = S(s, RRCL, TMD)

with

s =

{
IED + RRCL if RRANX = ∅
RRANX else

tRRY = inf t ∈ ~t | t > SD

RRF tRRF =

{
∅ if RRANX = ∅ ∧ RRCL = ∅
inf t ∈ ~t | t > SD else

where ~t = S(s, RRCL, TMD)

with

s =

{
IED + RRCL if RRANX = ∅
RRANX else

SC ~tSC =

{
∅ if SCEF = ’000’

S(s, SCCL, TMD) else
with

s =


∅ if SCANX = ∅ ∧ SCCL = ∅
IED + SCCL else if SCANX = ∅
SCANX else

CD tCD = Oev(LEICP, t0)

PAM: State Variables Initialization

State Initialization per t0 Comments

Tmd Tmdt0 = MD

Nvl Nvlt0 =

{
0.0 if IED > t0

R(CNTRL)× NT else

Nrt Nrtt0 =

{
0.0 if IED > t0

IPNR else

Continued on next page

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 12

Continued from previous page

State Initialization per t0 Comments

Nac Nact0 =


0.0 if IPNR = ∅
IPAC else if IPAC 6= ∅
Y (t−, t0)×Nvlt0 ×Nrtt0 else

with t− = sup t ∈ ~tIP | t < t0

Fac Fact0 =


0.0 if FER = ∅
FEAC else if FEAC 6= ∅
Y (t−, t0)×Nvlt0 × FER else if FEB = ’N’
Y (tFP−,t0)

Y (tFP−,tFP+)
× FER else

with
tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0

Nsc Nsct0 =

{
SCIXSD if SCEF = ’[x]N[x]’

1.0 else

Isc Isct0 =

{
SCIXSD if SCEF = ’I[x][x]’

1.0 else

Prf Prft0 = CTS

Led Ledt0 = t0

PAM: State Transition Functions and Payoff Functions

Event Payoff Function State Transition Function

AD 0.0
Nact+ = Nact− + Y (Ledt−1, t)Nrtt−Nvlt−

Ledt+ = t

IED D(Prft−)R(CNTRL)(−1)(NT + PDIED)

Nvlt+ = R(CNTRL)NT

Nrtt+ =

{
0.0 if IPNR = ∅
IPNR else

Nact+ =


IPAC if IPAC 6= ∅
yNvlt+Nrtt+ if IPANX 6= ∅ ∧ IPANX < t

0.0 else

Ledt+ = t
with
y = Y (IPANX, t)

PR D(Prft−)Nsct−Nvlt−

Nvlt+ = 0.0

Nrtt+ = 0.0

Ledt+ = t

PP D(Prft−)Orf (OPMO, t)

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Nvlt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Nvlt+ = Nvlt− −O
rf (OPMO, t)

Ledt+ = t
with
tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0

PY

D(Prft−)R(CNTRL)PYRT if PYTP = ’A’

cPYRT if PYTP = ’N’

cmax(0,Nrtt− −O
rf (RRMO, t)) if PYTP = ’I’

with
c = D(Prft−)R(CNTRL)Y (Ledt− , t)Nvlt−

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Nvlt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Ledt+ = t
with
tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0

FP
c if FEB = ’A’

cY (Ledt− , t)Nvlt− + Fact− if FEB = ’N’
with
c = D(Prft−)R(CNTRL)FER

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Nvlt−

Fact+ = 0.0

Ledt+ = t

Continued on next page

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 13

Continued from previous page

Event Payoff Function State Transition Function

PRD D(Prft−)R(CNTRL)(−1)(PPRD + Nact−+
Y (Ledt− , t)Nrtt−Nvlt−)

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Nvlt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Ledt+ = t
with
tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0

TD D(Prft−)R(CNTRL)(PTD + Nact−+
Y (Ledt− , t)Nrtt−Nvlt−)

Nvlt+ = 0.0

Nact+ = 0.0

Fact+ = 0.0

Nrtt+ = 0.0

Ledt+ = t

IP D(Prft−)Isct−(Nact−+
Y (Ledt− , t)Nrtt−Nvlt−)

Nact+ = 0.0

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Ledt+ = t
with
tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0

IPCI 0.0

Nvlt+ = Nvlt− + Nact− + Y (Ledt− , t)Nvlt−Nrtt−

Nact+ = 0.0

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Ledt+ = t
with
tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0

RR 0.0

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Nvlt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Nrtt+ = min(max(Nrtt− + ∆r, RRLF), RRLC)

Ledt+ = t
with

∆r = min(max(Orf (RRMO, t)RRMT + RRSP−Nrtt− , RRPF), RRPC)

tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0

RRF 0.0

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Nvlt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Nrtt+ = RRNXT

Ledt+ = t
with
tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0

Continued on next page

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 14

Continued from previous page

Event Payoff Function State Transition Function

SC 0.0

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Nvlt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Nsct+ =

{
Nsct− if SCEF = [x]0[x]
Orf (SCMO,t)−SCIED

SCIED
else

Isct+ =

{
Isct− if SCEF = 0[x][x]
Orf (SCMO,t)−SCIED

SCIED
else

Ledt+ = t
with
tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0

CD 0.0

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Nvlt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Prft+ = ’D’

Ledt+ = t
with
tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0

9.2. LAM: Linear Amortizer.

LAM: Contract Schedule

Event Schedule Comments

AD Same as PAM

IED Same as PAM

PR tPR = S(s, PRCL, TMD) with

s =


∅ if PRANX = ∅ ∧ PRCL = ∅
IED + PRCL else if PRANX = ∅
PRANX else

PP Same as PAM

PY Same as PAM

FP Same as PAM

PRD Same as PAM

TD Same as PAM

IP Same as PAM

IPCI Same as PAM

IPCB ~tIPCB =

{
∅ if IPCB 6= ’NTL’

S(s, IPCBCL, TMD) else
with

s =


∅ if IPCBANX = ∅ ∧ IPCBCL = ∅
IED + IPCBCL else if IPCBANX = ∅
IPCBANX else

RR Same as PAM

RRF Same as PAM

SC Same as PAM

CD Same as PAM

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 15

LAM: State Variables Initialization

State Initialization per t0 Comments

Tmd Tmdt0 =

{
MD ifMD 6= ∅
t− + ceil(NT

PRNXT
)PRCL

where

t− =


PRANX if PRANX 6= ∅ ∧ PRANX ≥ t0
IED + PRCL else if IED + PRCL ≥ t0
sup t ∈ ~tPR | t < t0 else

Nvl Same as PAM

Nrt Same as PAM

Nac Same as PAM

Fac Same as PAM

Nsc Same as PAM

Isc Same as PAM

Prf Same as PAM

Led Same as PAM

Npr Nprt0 =

{
PRNXT if PRNXT 6= ∅
NT(ceil(Y (s,TMD)

Y (s,s+PRCL)
))−1 else

with

s =


PRANX if PRANX 6= ∅ ∧ PRANX > t0

IED + PRCL else if PRANX = ∅ ∧ IED + PRCL > t0

t− else

and where t− = sup t ∈ ~tPR | t < t0

Icb Icbt0 =


0.0 if t0 < IED

R(CNTRL)NT else if IPCB = ’NT’

R(CNTRL)IPCBA else

LAM: State Transition Functions and Payoff Functions

Event Payoff Function State Transition Function

AD POF AD PAM() STF AD PAM()

IED POF IED PAM()

Nvlt+ = R(CNTRL)NT

Nrtt+ = IPNR

Nact+ =


IPAC if IPAC 6= ∅
yNvlt+Nrtt+ if IPANX 6= ∅ ∧ IPANX < t

0.0 else

Ledt+ = t

Icbt+ =

{
R(CNTRL)NT if IPCB = ’NT’

R(CNTRL)IPCBA else

PR D(Prft−)R(CNTRL)Nsct−Nprt−

Nvlt+ = Nvlt− −R(CNTRL)Nprt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Icbt+ =

{
Icbt− if IPCB 6= ’NT’

Nvlt+ else

Ledt+ = t
with
tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0

Continued on next page

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 16

Continued from previous page

Event Payoff Function State Transition Function

PP POF PP PAM()

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Icbt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Nvlt+ = Nvlt− −O
rf (OPMO, t)

Icbt+ =

{
Icbt− if IPCB 6= ’NT’

Nvlt+ else

Ledt+ = t
with
tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0

PY POF PY PAM()

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Icbt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Ledt+ = t
with
tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0

FP POF FP PAM()

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Icbt−

Fact+ = 0.0

Ledt+ = t

PRD D(Prft−)R(CNTRL)(−1)(PPRD + Nact−+
Y (Ledt− , t)Nrtt−Icbt−)

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Icbt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Ledt+ = t
with
tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0
TD D(Prft−)R(CNTRL)(PTD + Nact−+

Y (Ledt− , t)Nrtt−Icbt−)
STF TD PAM()

IP D(Prft−)Isct−(Nact−+
Y (Ledt− , t)Nrtt−Icbt−)

STF IP PAM()

IPCI POF IPCI PAM()

Nvlt+ = Nvlt− + Nact− + Y (Ledt− , t)Nrtt−Icbt−

Nact+ = 0.0

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Icbt+ =

{
Icbt− if IPCB 6= ’NT’

Nvlt+ else

Ledt+ = t
with
tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0

IPCB 0.0

Icbt+ = Nvlt−

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Icbt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Ledt+ = t
with
tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0

Continued on next page

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 17

Continued from previous page

Event Payoff Function State Transition Function

RR POF RR PAM()

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Icbt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Nrtt+ = min(max(Nrtt− + ∆r, RRLF), RRLC)

Ledt+ = t
with

∆r = min(max(Orf (RRMO, t)RRMT + RRSP−Nrtt− , RRPF), RRPC)

tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0

RRF POF RRF PAM()

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Icbt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Nrtt+ = RRNXT

Ledt+ = t
with
tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0

SC POF SC PAM()

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Icbt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Nsct+ =

{
Nsct− if SCEF = [x]0[x]
Orf (SCMO,t)−SCIED

SCIED
else

Isct+ =

{
Isct− if SCEF = 0[x][x]
Orf (SCMO,t)−SCIED

SCIED
else

Ledt+ = t
with
tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0

CD POF CD PAM()

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Icbt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Prft+ = ’D’

Ledt+ = t
with
tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0

9.3. LAX: Exotic Linear Amortizer.

LAX: Contract Schedule

Event Schedule Comments

AD Same as PAM

IED Same as PAM

PR ~tPR =

{
{t1, t2, ..., ti, ...} if ARPRCL = ∅
s1 ∪ s2 ∪ ... ∪ si ∪ ... else

with
si = S(ARPRANXi, ~Ci, ARPRANXi+1), i ∈ {1, 2, ..., | ARINCDEC |
} | ARINCDECi = ’DEC’

with

~C =

{
ARPRCL if | ARPRCL |=| ARPRANX |
{c1, c2, ..., cn} else

where
n =| ARPRANX |, ck = ARPRCL1∀k

Continued on next page

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 18

Continued from previous page

Event Schedule Comments

PI ~tPI =

{
{t1, t2, ..., ti, ...} if ARPRCL = ∅
s1 ∪ s2 ∪ ... ∪ si ∪ ... else

with
si = S(ARPRANXi, ~Ci, ARPRANXi+1), i ∈ {1, 2, ..., | ARINCDEC |
} | ARINCDECi = ’INC’

with

~C =

{
ARPRCL if | ARPRCL |=| ARPRANX |
{c1, c2, ..., cn} else

where
n =| ARPRANX |, ck = ARPRCL1∀k

PRF ~tPRF = ARPRANX

PP Same as PAM

PY Same as PAM

FP Same as PAM

PRD Same as PAM

TD Same as PAM

IP ~tIP = S(ARIPANX, ARIPCL,Tmdt0)

IPCI Same as PAM

IPCB Same as LAM

RR ~tRR =

{
{t1, t2, ..., ti, ...} if ARRRCL = ∅
s1 ∪ s2 ∪ ... ∪ si ∪ ... else

with
si = S(ARRRANXi, ~Ci, ARRRANXi+1), i ∈ {1, 2, ..., | ARFIXVAR |
} | ARFIXVARi = ’V’

with

~C =

{
ARRRCL if | ARRRCL |=| ARRRANX |
{c1, c2, ..., cn} else

where
n =| ARRRANX |, ck = ARRRCL1∀k

RRF ~tRRF =

{
{t1, t2, ..., ti, ...} if ARRRCL = ∅
s1 ∪ s2 ∪ ... ∪ si ∪ ... else

with
si = S(ARRRANXi, ~Ci, ARRRANXi+1), i ∈ {1, 2, ..., | ARFIXVAR |
} | ARFIXVARi = ’F’

with

~C =

{
ARRRCL if | ARRRCL |=| ARRRANX |
{c1, c2, ..., cn} else

where
n =| ARRRANX |, ck = ARRRCL1∀k

SC Same as PAM

CD Same as PAM

LAX: State Variables Initialization

State Initialization per t0 Comments

Tmd Tmdt0 =

{
MD if MD 6= ∅
inf t > t0 | N(t) = 0 else

with
N(t) = NT +

∑n(t)
i=1 (−1)kARPRNXTi | si |

where

n(t) =

{
sup k ∈ N | ARPRANXk < t if t < max(ARPRANX)

| ARPRANX | else

k =

{
0 if ARINCDECi = ’INC’

1 else

si =

{
{ARPRANXi} if ARPRCL = ∅
S(ARPRANXi, ~Ci, Ti) else

Ti =

{
ARPRANXi+1 if i <| ARPRANX |
t else

~C =

{
ARRRCL if | ARRRCL |=| ARRRANX |
{c1, c2, ..., cn} else

Nvl Same as PAM

Nrt Same as PAM

Nac Same as PAM

Fac Same as PAM

Nsc Same as PAM

Isc Same as PAM

Prf Same as PAM

Led Same as PAM

Npr Nprt0 =

{
0.0 if t0 ≥ ARPRANX1

ARPRNXTi else
where
i = sup k ∈ N | ARPRANXk < t0

Continued on next page

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 19

Continued from previous page

State Initialization per t0 Comments

Icb Same as LAM

LAX: State Transition Functions and Payoff Functions

Event Payoff Function State Transition Function

AD POF AD PAM() STF AD PAM()

IED POF IED PAM() STF IED LAM()

PR POF PR LAM() STF PR LAM()

PI D(Prft−)R(CNTRL)(−1)Nsct−Nprt−

Nvlt+ = Nvlt− +R(CNTRL)Nprt−

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Icbt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Icbt+ =

{
Icbt− if IPCB 6= ’NT’

Nvlt+ else

Ledt+ = t
with
tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0

PRF 0.0

Nprt+ = ARPRNXTi

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Icbt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Icbt+ =

{
Icbt− if IPCB 6= ’NT’

Nvlt+ else

Ledt+ = t
with

i = sup k ∈ N | ARPRANXk = t

tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0
PP POF PP PAM() STF PP LAM()

PY POF PY PAM() STF PY LAM()

FP POF FP PAM() STF FP LAM()

PRD POF PRD LAM() STF PRD LAM()

TD POF TD LAM() STF TD PAM()

IP POF IP LAM() STF IP PAM()

IPCI POF IPCI PAM() STF IPCI LAM()

IPCB POF IPCB LAM() STF IPCB LAM()

RR POF RR PAM()

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Icbt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Nrtt+ = min(max(Nrtt− + ∆r, RRLF), RRLC)

Ledt+ = t
with

∆r = min(max(Orf (RRMO, t)RRMT + ARRATEi −Nrtt− , RRPF), RRPC)

i = sup k ∈ N | ARPRANXk = t

tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0

Continued on next page

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 20

Continued from previous page

Event Payoff Function State Transition Function

RRF POF RRF PAM()

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Icbt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Nrtt+ = ARRATEi

Ledt+ = t
with

i = sup k ∈ N | ARPRANXk = t

tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0
SC POF SC PAM() STF SC LAM()

CD POF CD PAM() STF CD LAM()

9.4. NAM: Negative Amortizer.

NAM: Contract Schedule

Event Schedule Comments

AD Same as PAM

IED Same as PAM

PR Same as LAM

PP Same as PAM

PY Same as PAM

FP Same as PAM

PRD Same as PAM

TD Same as PAM

IP ~tIP = (~u,~v)
where

~u =


∅ if IPANX = ∅ ∧ IPCL = ∅
∅ if IPCED 6= ∅ ∧ IPCED ≥ T

S(r, IPCL, T) else

~v = S(s, PRCL, TMD)

with

r =


IPCED if IPCED 6= ∅
IPANX else if IPANX 6= ∅
IED + IPCL else if IPCL 6= ∅
∅ else

T = s− PRCL

s =

{
IED + PRCL if PRANX = ∅
PRANX else

IPCI Same as PAM

IPCB Same as LAM

RR Same as PAM

RRF Same as PAM

SC Same as PAM

CD Same as PAM

NAM: State Variables Initialization

State Initialization per t0 Comments

Tmd Tmdt0 =

{
MD if MD 6= ∅
t− + nPRCL else

with n = ceil(NT

PRNXT−NTY (t−,t−+PRCL)IPNR
)

where

t− =


PRANX if PRANX 6= ∅ ∧ PRANX ≥ t0
IED + PRCL else if IED + PRCL ≥ t0
sup t ∈ tPR | t < t0 else

Nvl Same as PAM

Nrt Same as PAM

Nac Same as PAM

Fac Same as PAM

Nsc Same as PAM

Isc Same as PAM

Prf Same as PAM

Led Same as PAM

Continued on next page

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 21

Continued from previous page

State Initialization per t0 Comments

Npr Nprt0 = R(CNTRL)PRNXT

Icb Same as LAM

NAM: State Transition Functions and Payoff Functions

Event Payoff Function State Transition Function

AD POF AD PAM() STF AD PAM()

IED POF IED PAM() STF IED LAM()

PR D(Prft−)Nsct−(Nprt− −Nact−−
Y (Ledt− , t)Nrtt−Icbt−)

Nvlt+ = Nvlt− − (Nprt− −Nact+)

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Icbt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Icbt+ =

{
Icbt− if IPCB 6= ’NT’

Nvlt+ else

Ledt+ = t
with
tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0
PP POF PP PAM() STF PP LAM()

PY POF PY PAM() STF PY LAM()

FP POF FP PAM() STF FP LAM()

PRD POF PRD LAM() STF PRD LAM()

TD POF TD LAM() STF TD PAM()

IP POF IP LAM() STF IP PAM()

IPCI POF IPCI PAM() STF IPCI LAM()

IPCB POF IPCB LAM() STF IPCB LAM()

RR POF RR PAM() STF RR LAM()

RRF POF RRF PAM() STF RRF LAM()

SC POF SC PAM() STF SC LAM()

CD POF CD PAM() STF CD LAM()

9.5. ANN: Annuity.

ANN: Contract Schedule

Event Schedule Comments

AD Same as PAM

IED Same as PAM

PR Same as LAM

PP Same as PAM

PY Same as PAM

FP Same as PAM

PRD Same as PAM

TD Same as PAM

IP Same as NAM

IPCI Same as PAM

IPCB Same as LAM

RR Same as PAM

RRF Same as PAM

SC Same as PAM

CD Same as PAM

ANN: State Variables Initialization

State Initialization per t0 Comments

Tmd Same as NAM

Nvl Same as PAM

Continued on next page

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 22

Continued from previous page

State Initialization per t0 Comments

Nrt Same as PAM

Nac Same as PAM

Fac Same as PAM

Nsc Same as PAM

Isc Same as PAM

Prf Same as PAM

Led Same as PAM

Npr Nprt0 =

{
R(CNTRL)PRNXT if PRNXT 6= ∅
(NT + Nact0) todo

todo
else

where n = |~t| with |a| indicating the cardinality of
set a

Icb Same as LAM

ANN: State Transition Functions and Payoff Functions

Event Payoff Function State Transition Function

AD POF AD PAM() STF AD PAM()

IED POF IED PAM() STF IED LAM()

PR POF PR NAM() STF PR NAM()

PP POF PP PAM() STF PP LAM()

PY POF PY PAM() STF PY LAM()

FP POF FP PAM() STF FP LAM()

PRD POF PRD LAM() STF PRD LAM()

TD POF TD LAM() STF TD PAM()

IP POF IP LAM() STF IP PAM()

IPCI POF IPCI PAM() STF IPCI LAM()

IPCB POF IPCB LAM() STF IPCB LAM()

RR POF RR PAM()

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Icbt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Nrtt+ = min(max(Nrtt− + ∆r, RRLF), RRLC)

Nprt+ = A(t,Tmdt+ ,Nvlt+ ,Nact+ ,Nrtt+)

Ledt+ = t
with

∆r = min(max(Orf (RRMO, t)RRMT + RRSP−Nrtt− , RRPF), RRPC)

tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0

RRF POF RRF PAM()

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Icbt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Nrtt+ = RRNXT

Nprt+ = A(t,Tmdt+ ,Nvlt+ ,Nact+ ,Nrtt+)

Ledt+ = t
with
tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0
SC POF SC PAM() STF SC LAM()

CD POF CD PAM() STF CD LAM()

9.6. CLM: Call Money.

CLM: Contract Schedule

Event Schedule Comments

AD Same as PAM

IED Same as PAM

PR Same as PAM

Continued on next page

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 23

Continued from previous page

Event Schedule Comments

FP Same as PAM

IP tIP = Tmdt0

IPCI ~tIPCI =

{
∅ if IPNR = ∅
S(s, IPCL,Tmdt0) else

where

s =

{
IPANX if IPANX 6= ∅
IED + IPCL else

RR Same as PAM

RRF Same as PAM

CD Same as PAM

CLM: State Variables Initialization

State Initialization per t0 Comments

Tmd Tmdt0 =


MD if MD 6= ∅
s else if Oev(CID, t0) 6= {}
tmax else

where
s = sup t ∈ τ(Oev(CID, t0))

Nvl Same as PAM

Nrt Same as PAM

Nac Same as PAM

Fac Same as PAM

Prf Same as PAM

Led Same as PAM

CLM: State Transition Functions and Payoff Functions

Event Payoff Function State Transition Function

AD POF AD PAM() STF AD PAM()

IED D(Prft−)R(CNTRL)(−1)NT STF IED PAM()

PR POF PR PAM() STF PR PAM()

FP POF FP PAM() STF FP PAM()

IP D(Prft−)(Nact− + Y (Ledt− , t)Nrtt−Nvlt−)
Nact+ = 0.0

Ledt+ = t

IPCI POF IPCI PAM() STF IPCI PAM()

RR POF RR PAM() STF RR PAM()

RRF POF RRF PAM() STF RRF PAM()

CD POF CD PAM() STF CD PAM()

9.7. UMP: Undefined Maturity Profile.

UMP: Contract Schedule

Event Schedule Comments

AD Same as PAM

IED Same as PAM

PR ~tPR = Oev(CID, t0)

FP Same as PAM

IPCI ~tIPCI =

{
∅ if IPNR = ∅
S(s, IPCL,Tmdt0) else

where

s =

{
IPANX if IPANX 6= ∅
IED + IPCL else

RR Same as PAM

RRF Same as PAM

CD Same as PAM

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 24

UMP: State Variables Initialization

State Initialization per t0 Comments

Tmd Tmdt0 =

{
s if Oev(CID, t0) 6= {}
tmax else

where
s = sup t, t ∈ τ(Oev(CID, t0))

Nvl Same as PAM

Nrt Same as PAM

Nac Same as PAM

Fac Same as PAM

Prf Same as PAM

Led Same as PAM

UMP: State Transition Functions and Payoff Functions

Event Payoff Function State Transition Function

AD POF AD PAM() STF AD PAM()

IED POF IED CLM() STF IED PAM()

PR f(ePRt)

Nact+ = Nact− + Y (Ledt− , t)Nrtt−Nvlt−

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (t−,t)
Y (t−,t+)

FER else

Nvlt+ = Nvlt− − f(ePRt)

Ledt+ = t

FP POF FP PAM() STF FP PAM()

IPCI POF IPCI PAM() STF IPCI PAM()

RR POF RR PAM() STF RR PAM()

RRF POF RRF PAM() STF RRF PAM()

CD POF CD PAM() STF CD PAM()

9.8. CSH: Cash.

CSH: Contract Schedule

Event Schedule Comments

AD Same as PAM

CSH: State Variables Initialization

State Initialization per t0 Comments

Nvl Nvlt0 = R(CNTRL)NT

Led Same as PAM

CSH: State Transition Functions and Payoff Functions

Event Payoff Function State Transition Function

AD POF AD PAM() Ledt+ = t

9.9. STK: Stock.

STK: Contract Schedule

Event Schedule Comments

AD Same as PAM

PRD Same as PAM

TD Same as PAM

DV(fix) tDV
(fix)

=

{
∅ if DVNP = ∅
DVANX else

DV ~tDV =

{
∅ if DVANX = ∅ ∧ DVCL = ∅
S(s, DVCL, tmax) else

where

s =

{
DVANX if DVNP = ∅
DVANX + DVCL else

CD Same as PAM

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 25

STK: State Variables Initialization

State Initialization per t0 Comments

Prf Same as PAM

Led Same as PAM

STK: State Transition Functions and Payoff Functions

Event Payoff Function State Transition Function

AD POF AD PAM() Ledt+ = t

PRD D(Prft−)R(CNTRL)(−1)PPRD Ledt+ = t

TD D(Prft−)R(CNTRL)PTD Ledt+ = t

DV(fix) D(Prft−)R(CNTRL)DVNP Ledt+ = t

DV D(Prft−)R(CNTRL)Orf (DVMO, t) Ledt+ = t

CD POF CD PAM()
Prft+ = Orf (LEICP, t)

Ledt+ = t

9.10. COM: Commodity.

COM: Contract Schedule

Event Schedule Comments

AD Same as PAM

PRD Same as STK

TD Same as STK

COM: State Variables Initialization

State Initialization per t0 Comments

Led Same as STK

COM: State Transition Functions and Payoff Functions

Event Payoff Function State Transition Function

AD POF AD PAM() STF AD STK()

PRD POF PRD STK() STF PRD STK()

TD POF PRD STK() STF PRD STK()

9.11. FXOUT: Foreign Exchange Outright.

FXOUT: Contract Schedule

Event Schedule Comments

AD Same as PAM

PRD Same as PAM

TD Same as PAM

STD tSTD =

{
∅ if DS = ’D’

Tmdt0 else

STD(1) tSTD =

{
∅ if DS = ’S’

Tmdt0 else

STD(2) tSTD =

{
∅ if DS = ’S’

Tmdt0 else

CD Same as PAM

FXOUT: State Variables Initialization

State Initialization per t0 Comments

Tmd Tmdt0 =

{
MD if STD = ∅
STD else

Continued on next page

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 26

Continued from previous page

State Initialization per t0 Comments

Prf Same as PAM

Led Same as PAM

FXOUT: State Transition Functions and Payoff Functions

Event Payoff Function State Transition Function

AD POF AD PAM() STF AD STK()

PRD POF PRD STK() STF PRD STK()

TD POF TD STK() STF TD STK()

STD D(Prft−)R(CNTRL)(NT−Orf (i,Tmdt)NT2)
where
i = concat(CUR2,”/”,CUR)
and concat(x, y, z) indicates the string concatena-
tion function

Ledt+ = t

STD(1) D(Prft−)R(CNTRL)NT Ledt+ = t

STD(2) D(Prft−)R(CNTRL)(−1)NT2 Ledt+ = t

CD POF CD PAM() STF CD STK()

9.12. SWPPV: Plain Vanilla Interest Rate Swap.

SWPPV: Contract Schedule

Event Schedule Comments

AD Same as PAM

PRD Same as PAM

TD Same as PAM

IED Same as PAM

PR Same as PAM

IP ~tIP =


∅ if DS = ’D’

Tmdt0 else ifIPCL = ∅
S(s, IPCL,Tmdt0) else

where

s =

{
IPANX if IPANX 6= ∅
IED + IPCL else

IP(fix) ~tIP
(fix)

=


∅ if DS = ’S’

Tmdt0 else ifIPCL = ∅
S(s, IPCL,Tmdt0) else

IP(var) ~tIP
(var)

=


∅ if DS = ’S’

Tmdt0 else ifIPCL = ∅
S(s, IPCL,Tmdt0) else

RR ~tRR = S(s, RRCL,Tmdt0) where

s =

{
RRANX if RRANX 6= ∅
IED + RRCL else

CD Same as PAM

SWPPV: State Variables Initialization

State Initialization per t0 Comments

Tmd Same as PAM

Nvl Same as PAM

Nrt Nrtt0 =

{
0.0 if IED > t0

IPNR2 else

Nac Nact0 =

{
IPAC if IPAC 6= ∅
Y (t−, t0)Nvlt0(IPNR−Nrtt0) else

with t− = sup t, t ∈ tIP , t < t0

Nac1 Nac1t0 = Y (t−, t0)Nvlt0IPNR with t− = sup t, t ∈ tIP , t < t0
Nac2 Nac2t0 = Y (t−, t0)Nvlt0Nrtt0 with t− = sup t, t ∈ tIP , t < t0
Prf Same as PAM

Led Same as PAM

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 27

SWPPV: State Transition Functions and Payoff Functions

Event Payoff Function State Transition Function

AD POF AD PAM()

Nact+ = Y (Ledt− , t)Nvlt0(IPNR−Nrtt0)

Nac1t+ = Y (Ledt− , t)Nvlt0IPNR

Nac2t+ = Y (Ledt− , t)Nvlt0Nrtt0

Ledt+ = t

IED 0.0

Nvlt+ = R(CNTRL)NT

Nact+ = 0.0

Nac1t+ = 0.0

Nac2t+ = 0.0

Nrtt+ = IPNR2

Ledt+ = t

PR 0.0

Nvlt+ = 0.0

Nrtt+ = 0.0

Ledt+ = t

PRD POF PRD STK()

Nact+ = Y (Ledt− , t)Nvlt0(IPNR−Nrtt0)

Nac1t+ = Y (Ledt− , t)Nvlt0IPNR

Nac2t+ = Y (Ledt− , t)Nvlt0Nrtt0

Ledt+ = t

TD POF TD STK()

Nvlt+ = 0.0

Nact+ = 0.0

Nac1t+ = 0.0

Nac2t+ = 0.0

Nrtt+ = 0.0

Ledt+ = t

IP D(Prft−)R(CNTRL)(Nact− + Y (Ledt− , t)(IPNR −
Nrtt−)Nvlt−)

Nact+ = 0.0

Ledt+ = t

IP(fix) D(Prft−)R(CNTRL)(Nac1t− +
Y (Ledt− , t)IPNRNvlt−)

Nac1t+ = 0.0

Ledt+ = t

IP(var) D(Prft−)R(CNTRL)(Nac2t− −
Y (Ledt− , t)Nrtt−Nvlt−)

Nac2t+ = 0.0

Ledt+ = t

RR POF RR PAM()

Nact+ = Y (Ledt− , t)Nvlt0(IPNR−Nrtt0)

Nac1t+ = Y (Ledt− , t)Nvlt0IPNR

Nac2t+ = Y (Ledt− , t)Nvlt0Nrtt0

Nrtt+ = RRMLTOrf (RRMO, t) + RRSP

Ledt+ = t

CD POF CD PAM()

Nact+ = Y (Ledt− , t)Nvlt0(IPNR−Nrtt0)

Nac1t+ = Y (Ledt− , t)Nvlt0IPNR

Nac2t+ = Y (Ledt− , t)Nvlt0Nrtt0

Prft+ = ’D’

Ledt+ = t

9.13. SWAPS: Swap.

SWAPS: Contract Schedule

Event Schedule Comments

AD Same as PAM

PRD Same as PAM

TD Same as PAM

Continued on next page

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 28

Continued from previous page

Event Schedule Comments

k {ekt } =

{
{ek,1t } ∪ {el,2s } if DS = ’D’

{ek,1t }+ {el,2s } else

with
{ek,1t }+ {el,2s } = U ∪ V
and
U = {ek,1t }4{e

l,2
s }

V = {xmτ + ymτ }
where for any two events xkt ∈ {ek,1t }, yls ∈ {el,2s } we have
xkt = yls ⇐⇒ t = s∧k = l, 4 is the distinct union-operator,
and xkt + yls = zmτ with τ = t = s, m = k = l ∈ {IED,IP,PR}
indicates that any two congruent events of type IED, IP, or
PR are merged into a new aggregate event (see payoff and
state transition function below).

with
{ek,1t } = Uev(FirstLeg, t0 | {CNTRL = r(1)})

{el,2s } = Uev(SecondLeg, t0 | {CNTRL = r(2)})

r(1) =

{
RPA if CNTRL = RFL

RPL else

r(2) =

{
RPL if CNTRL = RFL

RPA else

SWAPS: State Variables Initialization

State Initialization per t0 Comments

Tmd Tmdt0 = max(Usv(FirstLeg, t0,Tmd), Usv(SecondLeg, t0,Tmd))

Nac Nact0 = Usv(FirstLeg, t0,Nac | {CNTRL = r(1)}) +

Usv(SecondLeg, t0,Nac | {CNTRL = r(2)})
with

r(1) =

{
RPA if CNTRL = RFL

RPL else

r(2) =

{
RPL if CNTRL = RFL

RPA else

Prf Same as PAM

Led Same as PAM

SWAPS: State Transition Functions and Payoff Functions

Event Payoff Function State Transition Function

AD POF AD PAM()

Nact+ = Usv(FirstLeg, t,Nac | {CNTRL = r(1)})

+ Usv(SecondLeg, t,Nac | {CNTRL = r(2)})

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (t−,t)
Y (t−,t+)

FER else

Ledt+ = t

PRD D(Prft−)((−1)PPRD

+Usv(FirstLeg, t,Nac | {CNTRL = r(1)})
+Usv(SecondLeg, t,Nac | {CNTRL = r(2)}))

Nact+ = Usv(FirstLeg, t,Nac | {CNTRL = r(1)})

+ Usv(SecondLeg, t,Nac | {CNTRL = r(2)})
Ledt+ = t

TD D(Prft−)(PTD

+Usv(FirstLeg, t,Nac | {CNTRL = r(1)})
+Usv(SecondLeg, t,Nac | {CNTRL = r(2)}))

Nact+ = 0.0

Ledt+ = t

zmτ f(xmτ) + f(ymτ)

Nact+ = Usv(FirstLeg, t,Nac | {CNTRL = r(1)})

+ Usv(SecondLeg, t,Nac | {CNTRL = r(2)})
Ledt+ = t

9.14. CAPFL: Cap-Floor.

CAPFL: Contract Schedule

Event Schedule Comments

AD Same as PAM

PRD Same as PAM

TD Same as PAM

Continued on next page

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 29

Continued from previous page

Event Schedule Comments

k {ekt } = {xkt + yls}
for all events xkt ∈ Uev(Child, t0 | {CNTRL = RPA}), yls ∈
Uev(Child, t0 | {CNTRL = RPA, RRLC = RRLC, RRLF = RRLF})
with t = s ∧ k = l = IP . That is, any two congruent
events of the child-contract schedule, evaluated once with-
out RRLC, RRLF defined and once with the attributes defined,
which are of type IP are merged into a new aggregate event
(see payoff and state transition function below).

CAPFL: State Variables Initialization

State Initialization per t0 Comments

Tmd Tmdt0 = max(Usv(Child, t0,Tmd | {CNTRL = RPA}),
Usv(Child, t0,Tmd | {CNTRL = RPA, RRLC =

RRLC, RRLF = RRLF}))
Nac Nact0 = R(CNTRL)abs(

Usv(Child, t0,Nac | {CNTRL = r(1)})
−Usv(Child, t0,Nac | {CNTRL = RPA, RRLC =

RRLC, RRLF = RRLF}))
Prf Same as PAM

Led Same as PAM

CAPFL: State Transition Functions and Payoff Functions

Event Payoff Function State Transition Function

AD POF AD PAM()

Nact+ = R(CNTRL)abs(Usv(Child, t,Nac | {CNTRL = RPA})
− Usv(Child, t,Nac | {CNTRL = RPA,

RRLC = RRLC, RRLF = RRLF}))
Ledt+ = t

PRD D(Prft−)((−1)PPRD +R(CNTRL)abs(
Usv(Child, t,Nac | {CNTRL = RPA})−
Usv(Child, t,Nac | {CNTRL = RPA,

RRLC = RRLC, RRLF = RRLF})))

Nact+ = R(CNTRL)abs(Usv(Child, t,Nac | {CNTRL = RPA})
− Usv(Child, t,Nac | {CNTRL = RPA,

RRLC = RRLC, RRLF = RRLF}))
Ledt+ = t

TD D(Prft−)(PTD + R(CNTRL)abs(
Usv(Child, t,Nac | {CNTRL = RPA})−
Usv(Child, t,Nac | {CNTRL = RPA,

RRLC = RRLC, RRLF = RRLF})))

Nact+ = 0.0

Ledt+ = t

zmτ R(CNTRL)abs(f(xmτ)− f(ymτ))
where abs(u) defines that the absolute value of u
is taken.

Nact+ = 0.0

Ledt+ = t

9.15. OPTNS: Option.

OPTNS: Contract Schedule

Event Schedule Comments

AD Same as PAM

PRD Same as PAM

TD Same as PAM

XD tXD = MD

STD tSTD =

{
MD if STD = ∅
STD else

CD Same as PAM

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 30

OPTNS: State Variables Initialization

State Initialization per t0 Comments

Pos Post0 =



0.0 if t0 ≤ MD

max(St0 − OPS1, 0) else if OPTP = ’C’

max(OPS1− St0 , 0) else if OPTP = ’P’

max(St0 − OPS1, 0) else

+ max(OPS2− St0 , 0)

with
St0 = Orf (Uca(Child,MOC), t0)

Prf Same as PAM

Led Same as PAM

OPTNS: State Transition Functions and Payoff Functions

Event Payoff Function State Transition Function

AD POF AD PAM()
Post+ =


max(St − OPS1, 0) if OPTP = ’C’

max(OPS1− St, 0) else if OPTP = ’P’

max(St − OPS1, 0) else

+ max(OPS2− St, 0)

Ledt+ = t
with
St = Orf (Uca(Child,MOC), t)

PRD D(Prft−)(−1)PPRD STF PRD STK()

TD D(Prft−)PTD STF TD STK()

XD 0.0
Post+ =


max(St − OPS1, 0) if OPTP = ’C’

max(OPS1− St, 0) else if OPTP = ’P’

max(St − OPS1, 0) else

+ max(OPS2− St, 0)

Ledt+ = t
with
St = Orf (Uca(Child,MOC), t)

STD D(Prft−)R(CNTRL)Post−
Post+ = 0.0

Ledt+ = t

CD POF CD PAM() STF CD STK()

9.16. FUTUR: Future.

FUTUR: Contract Schedule

Event Schedule Comments

AD Same as PAM

PRD Same as PAM

TD Same as PAM

XD Same as OPTNS

STD Same as OPTNS

CD Same as PAM

FUTUR: State Variables Initialization

State Initialization per t0 Comments

Pos Post0 =

{
0.0 if t0 ≤ MD

St0 − PFUT else
with
St0 = Orf (Uca(Child,MOC), t0)

Prf Same as PAM

Led Same as PAM

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 31

FUTUR: State Transition Functions and Payoff Functions

Event Payoff Function State Transition Function

AD POF AD PAM()
Post+ = St − PFUT

Ledt+ = t
with
St = Orf (Uca(Child,MOC), t)

PRD POF PRD OPTNS() STF PRD STK()

TD POF TD OPTNS() STF TD STK()

XD POF XD OPTNS()
Post+ = St − PFUT

Ledt+ = t
with
St = Orf (Uca(Child,MOC), t)

STD POF STD OPTNS() STF STD OPTNS()

CD POF CD PAM() STF CD STK()

9.17. CEG: Credit Enhancement Guarantee.

CEG: Contract Schedule

Event Schedule Comments

AD Same as PAM

PRD Same as PAM

FP Same as PAM

XD tXD =


Uca(CECC1, NPD) if Uca(CECC1, NPD) 6= ∅
τ(Oev(i, t0)) else if Oev(i, t0) 6= ∅

∧τ(Oev(i, t0)) < Tmdt0
∅ else

with

i =

{
CECLEI if CECLEI 6= ∅
Uca(CECC1, LEICP) else

STD tSTD = tXD

MD tMD = Tmdt0
CD Same as PAM

CEG: State Variables Initialization

State Initialization per t0 Comments

Tmd Tmdt0 =

{
MD if CECLEI 6= ∅
max(τ({ekt })) else

with
{ekt } = {ek,1t } ∪ {e

k,2
t } ∪ ... ∪ {e

k,n
t }

{ek,it } = Uev(CECCi, t0 | {CNTRL = RPA})
n =| CECC |

Fac Fact0 =


0.0 if FER = ∅
FEAC else if FEAC 6= ∅
nY (t−, t0)FER else if FEB = ’N’
Y (tFP−,t0)

Y (tFP−,tFP+)
× FER else

with

n =

{
NT if NT 6= ∅∑|CECC|
i=1 Usv(CECCi, CDD,Nvl | {x}) else

x = ’CNTRL=RPA’

tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0

Pos Post0 =


0.0 if t0 ≥ Tmdt0
CECV× NT else if NT 6= ∅
CECV

∑|CECC|
i=1 ni else

with

ni =


Usv(CECCi, t0,Nvl | {x}) if CEGE = NO

Usv(CECCi, t0,Nvl | {x}) else if CEGE = NI

+Usv(CECCi, t0,Nac | {x})
Orf (Uca(CECCi,MOC), t0) else

and
x =’CNTRL=RPA’

Prf Same as PAM

Led Same as PAM

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 32

CEG: State Transition Functions and Payoff Functions

Event Payoff Function State Transition Function

AD POF AD PAM()

Post+ =


0.0 if t ≥ Tmdt0
CECV× NT else if NT 6= ∅
CECV

∑|CECC|
i=1 ni else

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Ledt+ = t
with

ni =


Usv(CECCi, t,Nvl | {x}) if CEGE = NO

Usv(CECCi, t,Nvl | {x}) else if CEGE = NI

+Usv(CECCi, t,Nac | {x})
Orf (Uca(CECCi,MOC), t) else

n =

{
NT if NT 6= ∅∑|CECC|
i=1 Usv(CECCi, CDD,Nvl | {x}) else

x = ’CNTRL=RPA’

tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0
PRD POF PRD STK() STF PRD STK()

FP
FER if FEB = A

Fact− + nY (t−, t)FER else
with

n =

{
NT if NT 6= ∅∑|CECC|
i=1 Usv(CECCi, CDD,Nvl | {x}) else

Fact+ = 0.0

Ledt+ = t

XD POF XD OPTNS()

Post+ =

{
CECV× NT if NT 6= ∅
CECV

∑|CECC|
i=1 ni else

Fact+ =

{
Fact− + Y (Ledt− , t)Nvlt−FER if FEB = ’N’
Y (tFP−,t)

Y (tFP−,tFP+)
FER else

Ledt+ = t
with

ni =


Usv(CECCi, t,Nvl | {x}) if CEGE = NO

Usv(CECCi, t,Nvl | {x}) else if CEGE = NI

+Usv(CECCi, t,Nac | {x})
Orf (Uca(CECCi,MOC), t) else

n =

{
NT if NT 6= ∅∑|CECC|
i=1 Usv(CECCi, CDD,Nvl | {x}) else

x = ’CNTRL=RPA’

tFP− = sup t ∈ ~tFP | t < t0

tFP+ = inf t ∈ ~tFP | t > t0
STD POF STD OPTNS() STF STD OPTNS()

MD 0.0
Post+ = 0.0

Ledt+ = t

CD POF CD PAM() STF CD STK()

9.18. CEC: Credit Enhancement Collateral.

CEC: Contract Schedule

Event Schedule Comments

AD Same as PAM

XD Same as CEG

STD Same as CEG

MD Same as CEG

CD Same as PAM

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

ACTUS: The algorithmic representation of financial contracts 33

CEC: State Variables Initialization

State Initialization per t0 Comments

Tmd Tmdt0 = max(τ({ekt })) with
{ekt } = {ek,1t } ∪ {e

k,2
t } ∪ ... ∪ {e

k,n
t }

{ek,it } = Uev(CECCi, t0 | {CNTRL = RPA})
n =| CECC |

Pos Post0 =

{
0.0 if t0 ≥ Tmdt0

min
(∑|CECE|

i=1 vi, CECV
∑|CECC|
i=1 ni

)
else

with

ni =


Usv(CECCi, t0,Nvl | {x}) if CEGE = NO

Usv(CECCi, t0,Nvl | {x}) else if CEGE = NI

+Usv(CECCi, t0,Nac | {x})
Orf (Uca(CECCi,MOC), t0) else

vi = Orf (Uca(CECEi,MOC), t0)

x = ’CNTRL=RPA’

Prf Same as PAM

Led Same as PAM

CEC: State Transition Functions and Payoff Functions

Event Payoff Function State Transition Function

AD POF AD PAM()
Post+ =

{
0.0 if t ≥ Tmdt0

min
(∑|CECE|

i=1 vi, CECV
∑|CECC|
i=1 ni

)
else

Ledt+ = t
with

ni =


Usv(CECCi, t,Nvl | {x}) if CEGE = NO

Usv(CECCi, t,Nvl | {x}) else if CEGE = NI

+Usv(CECCi, t,Nac | {x})
Orf (Uca(CECCi,MOC), t) else

vi = Orf (Uca(CECEi,MOC), t)

x = ’CNTRL=RPA’

XD POF XD OPTNS()
Post+ =

{
0.0 if t ≥ Tmdt0

min
(∑|CECE|

i=1 vi, CECV
∑|CECC|
i=1 ni

)
else

Ledt+ = t
with

ni =


Usv(CECCi, t,Nvl | {x}) if CEGE = NO

Usv(CECCi, t,Nvl | {x}) else if CEGE = NI

+Usv(CECCi, t,Nac | {x})
Orf (Uca(CECCi,MOC), t) else

vi = Orf (Uca(CECEi,MOC), t)

x = ’CNTRL=RPA’

STD POF STD OPTNS() STF STD OPTNS()

MD 0.0
Post+ = 0.0

Ledt+ = t

CD POF CD PAM() STF CD STK()

Copyright c© 2018–present by ACTUS Financial Research Foundation v1.0-RC-99cff79-2018-11-01

	About this document
	Versions
	Acknowledgements
	1. Introduction
	2. Financial contract taxonomy
	3. Notations
	3.1. Contract Attributes
	3.2. -Operator
	3.3. t0-Time
	3.4. State Variables
	3.5. Contract Events
	3.6. State Transition Functions
	3.7. Payoff Functions
	3.8. Date/Time
	3.9. Event Sequence
	3.10. Contract Lifetime

	4. Utility Functions
	4.1. Schedule
	4.2. Array Schedule
	4.3. End Of Month Shift Convention
	4.4. Business Day Shift Convention
	4.5. Business Day Calendar
	4.6. Year Fraction Convention
	4.7. Contract Role Sign Convention
	4.8. Contract Default Convention
	4.9. Annuity Amount Function

	5. Contract State Variables
	6. Contract Event Types
	7. Risk Factor Observer
	8. Child Contract Observer
	9. Contract Types
	9.1. PAM: Principal At Maturity
	9.2. LAM: Linear Amortizer
	9.3. LAX: Exotic Linear Amortizer
	9.4. NAM: Negative Amortizer
	9.5. ANN: Annuity
	9.6. CLM: Call Money
	9.7. UMP: Undefined Maturity Profile
	9.8. CSH: Cash
	9.9. STK: Stock
	9.10. COM: Commodity
	9.11. FXOUT: Foreign Exchange Outright
	9.12. SWPPV: Plain Vanilla Interest Rate Swap
	9.13. SWAPS: Swap
	9.14. CAPFL: Cap-Floor
	9.15. OPTNS: Option
	9.16. FUTUR: Future
	9.17. CEG: Credit Enhancement Guarantee
	9.18. CEC: Credit Enhancement Collateral

