ACTUS: The algorithmic representation of financial contracts VERSION v1.0-RC-99cff79-2018-11-01

NILS BUNDI ACTUS FINANCIAL RESEARCH FOUNDATION INFO@ACTUSFRF.ORG

ABOUT THIS DOCUMENT

This document provides the technical specifications of the Algorithmic Contract Types Unified Standards (ACTUS). It is developed, maintained, and released by the ACTUS Financial Research Foundation and provided by the same to the ACTUS Users Association under the terms of the open source license with which the document is published from time to time.

Versions

This document is versioned according to the following pattern: [major].[minor]-[rc]-[revision]-[date] where [major] and [minor] are integers marking major and minor release, [rc] is an optional label "RC" indicating whether a certain [major].[minor]-release is in *candidate*-status, [revision] indicates the current revision in form of the respective git commit hash (short form), and [date] gives the respective date of the revision. Releases are recorded in the following table.

Date	Version	Description	
to be re-	1.0	First version of the technical specification document containing specifications for the "ini-	
leased		tial" 18 contracts.	

ACKNOWLEDGEMENTS

We would like to acknowledge all members of the *ACTUS Users Association* who contribute a lot of their time and expertise to the development, review, and testing of the ACTUS standards, in general, and this document, in particular. Without their valuable contributions the ACTUS standards would not exist in the form as they currently do.

Contents

About this document	1
Versions	1
Acknowledgements	1
1. Introduction	3
2. Financial contract taxonomy	3
3. Notations	6
3.1. Contract Attributes	6
3.2. Ø-Operator	6
3.3. t_0 -Time	6
3.4. State Variables	6
3.5. Contract Events	6
3.6. State Transition Functions	6
3.7. Payoff Functions	6
3.8. Date/Time	7
3.9. Event Sequence	7
3.10. Contract Lifetime	7
4. Utility Functions	7
4.1. Schedule	7
4.2. Array Schedule	7
4.3. End Of Month Shift Convention	7
4.4. Business Day Shift Convention	7
4.5. Business Day Calendar	8
4.6. Year Fraction Convention	8
4.7. Contract Role Sign Convention	8
4.8. Contract Default Convention	8
4.9. Annuity Amount Function	9
5. Contract State Variables	9
6. Contract Event Types	9
7. Risk Factor Observer	10
8. Child Contract Observer	10
9. Contract Types	11
9.1. PAM: Principal At Maturity	11
9.2. LAM: Linear Amortizer	14
9.3. LAX: Exotic Linear Amortizer	17
9.4. NAM: Negative Amortizer	20
9.5. ANN: Annuity	21
9.6. CLM: Call Money	22
9.7. UMP: Undefined Maturity Profile	23
9.8. CSH: Cash	24
9.9. STK: Stock	24
9.10. COM: Commodity	25
9.11. FXOUT: Foreign Exchange Outright	25
9.12. SWPPV: Plain Vanilla Interest Rate Swap	26
9.13. SWAPS: Swap	27
9.14. CAPFL: Cap-Floor	28
9.15. OPTNS: Option	29
9.16. FUTUR: Future	30
9.17. CEG: Credit Enhancement Guarantee	31
9.18. CEC: Credit Enhancement Collateral	32

1. Introduction

Financial contracts are legal agreements between two (or more) counterparties on the exchange of future cash flows. Such legal agreements are defined unambiguously by means of a set of contractual terms and logic. As a result, financial contracts can be described mathematically and represented digitally as machine readable algorithms. The benefits of representing financial contracts digitally are manifold; Traditionally, transaction processing has been a field in which tremendous efficiency gains could be realized by the introduction of machines and machine readable contracts. Or, financial analytics by nature of the domain builds on the availability of computable representations of these agreements where for reasons of tractability often times analytical approximations are used. Recently, the rise of distributed ledger and blockchain technologies and the various use cases for smart contracts has opened up new possibilities for natively digital financial

In general, the exchange of cash flows between counterparties follows certain patterns. A typical cash flow exchange pattern is a bullet loan contract where principal is exchanged initially followed by cyclical interest payments and the principal is paid back (in a lump sum) at maturity of the contract. While the principal payments are fixed a variety of flavours exist for how the cyclical interest payments are determined and/or paid. As an example, interest payments may be due monthly, annually or according to arbitrary periods, they may be determined based on fixed or variable rates, different year fraction calculation methods may be used or there might be no interest due at all. Another popular pattern is that of amortizing loans for which, as opposed to bullet loans, principal may be paid out and paid back in portions of fixed or variable amounts and according to cyclical or custom schedules. Other types of financial contracts include but are not limited to shares, forwards, options, swaps, credit enhancements, repurchase agreements, securitization, etc. By focusing on the main distinguishing features, ACTUS describes the vast majority of all financial contracts with a set of about 32 generalized cash flow exchange patterns or Contract Types (CTs), respectively.

On the other hand, the legal agreements in financial contracts represent purely deterministic logic or the *mechanics of finance*, in other words. That is, a financial contract defines a fixed set of rules and conditions under which, given any external variables, the cash flow obligations can be determined unambiguously. For instance, in a *fixed rate loan* the cash flow obligations are defined explicitly. At the

same time, a variable rate loan defines explicitly the rules under which the variable rate is fixed going forward such that the cash flow obligations can be derived unambiguously going forward. The same holds true for derivative contracts where the cash flow obligations arise given some underlying reference instrument. Similarly, for analytical purposes, given some assumption of the evolution of this reference instrument the cash flow obligations conditioned on this assumption can be derived unabiguously.

The properties of financial contracts described above build the foundation for a standardized, deterministic algorithmic description of the cash flow obligations arising from such agreements. Thereby, this description is technology agnostic and supports all use cases necessary for this very standard to be used throughout all finance functions from front office to back office and covering pricing, deal origination, transaction processing, as well as analytics, in general, and liquidity projections, valuation, P&L calculations and projections, and risk measurement and aggregation, in particular. Furthermore, this standard builds a formidable basis for distributed ledger-powered, natively digital financial state machines or smart contracts, in other words.

2. Financial contract taxonomy

Below an overview of the ACTUS Contract Types taxonomy.

FIGURE 1. An overview of the ACTUS Contract Types Taxonomy.

Table 1 provides further details on the ACTUS Taxonomy including the real-world financial contracts covered through the various ACTUS Contract Types.

Family	Class	Type	Description	Covered contracts
Basic	Maturity	PAM: Prin-	Principal payment fully at Initial Exchange Date	All kind of bonds, term
CT		cipal at Ma-	(IED) and repaid at Maturity Date (MD). Fixed and	deposits, bullet loans
		turity	variable rates.	and mortgages etc.
		ANN:	Principal payment fully at IED and interest plus prin-	Classical level payment
		Annuity	cipal repaid periodically in constant amounts till MD.	mortgages, leasing con-
			If variable rate, total amount for interest and principal	tracts etc.
			is recalculated to be fully matured at MD.	

	Continued from previous page			
Family	Class	Type	Description	Covered contracts
		NAM: Neg-	Similar as ANN. However when resetting rate, total	Special class of ARMs
		ative Amor-	amount (interest plus principal) stay constant. MD	(adjustable rate mort-
		tizer	shifts. Only variable rates.	gages), Certain loans.
		LAM:	Principal payment fully at IED. Principal repaid pe-	Many amortizing loans
		Linear	riodically in constant amounts till MD. Interest gets	
		Amortizer	reduced accordingly. If variable rate, only interest pay-	
			ment is recalculated. Fixed and variable rates.	
		ANX:	Exotic version of ANN However step ups with respect	A special version of
		Exotic	to (i) Principal, (ii) Interest rates are possible. Highly	this kind are teaser
		Annuity	flexible to match totally irregular principal payments.	rate loans and mort-
			Principal can also be paid out in steps.	gages with annuity fea-
				tures
		LAX: Ex-	Exotic version of LAM. However step ups with respect	A special version of
		otic Linear	to (i) Principal, (ii) Interest rates are possible. Highly	this kind are teaser rate
		Amortizer	flexible to match totally irregular principal payments.	loans and mortgages
			Principal can also be paid out in steps.	
		NAX:	Exotic version of NAM However step ups with respect	A special version of
		Exotic	to (i) Principal, (ii) Interest rates are possible. Highly	this kind are teaser
		Negative	flexible to match totally irregular principal payments.	rate loans and mort-
		Amortizer	Principal can also be paid out in steps.	gages with variable MD
		CLM: Call	Loans that are rolled over as long as they are not	Interbank loans with
		Money	called. Once called it has to be paid back after the	call features
			stipulated notice period.	
		PBN: Per-	Bonds without any maturity date. Interest is paid into	Consoles, war loans
		petual	eternity if is not terminated.	
		Bonds		
	Non-	UMP: Un-	Principal paid in and out at any point in time without	Saving products of all
	Maturity	defined Ma-	prefixed schedule. Interest calculated on outstanding	kind, current accounts.
		turity Pro-	and capitalized periodically. Needs link to a behavioral	In some countries even
		file	function describing expected flows.	variable rate mortgages
				can be represented with
		CSH: Cash	Cash or cash equivalent position	this CT Cash, deposits at cen-
		Coll. Cash	Cash of Cash equivalent position	tral bank
		STK: Stock	Any instrument which is bought at a certain amount	All straight stocks
		DIR. DUCK	(market price normally) and then follows an index.	Till Straight Stocks
		COM:	This is not a financial contract in its proper sense.	Oil, gas, electricity,
		Commodity	However it tracks movements of commodities such as	houses etc.
		commodity	oil, gas or even houses. Such commodities can serve as	nouses eve.
			underlyings of commodity futures, guarantees or sim-	
			ply asset positions.	
Combined	l Swap	SWAPS:	Exchange of two basic CTs (PAM, ANN etc.). Nor-	All kind of swaps. The
	and	Swap	mally one is fixed, the other variable. However all	variety is defined by the
	Option	-	variants possible including different currencies for cross	underlying CTs which
	like		currency swaps, basic swaps or even different principal	currently are PAM and
			exchange programs.	ANN in all tis flavors.
				With each new basic CT
				the variety rises
		SWPPV:	Plain vanilla swaps where the underlying is always a	More than 90% of all in-
		Plain	PAM and one leg is fixed, the other variable. Plain	terest rate swaps follow
		Vanilla	vanilla cross currency swaps also covered.	this simple pattern.
		Swap		
		FXOUT:	Two parties agree to exchange two fixed cash flows in	Any FX-outright trans-
		Foreign	different currencies at a certain point in time in future.	action. This is also
		Ex-change		the underlying of FX-
		Outright		options and FX futures
		CAPFL:	Interest rate option expressed in a maximum or mini-	Caps and Floor options
		Cap Floors	mum interest rate	
			Q .: 1	

- ·	- CI		tinued from previous page	
Family	Class	Type	Description	Covered contracts
		CFXOP:	Exotic variants of caps and floors	
		Exotic Cap		
	Securiti-	Floor SCRMR:	Instruments bundled and traded in tranches without	MBS, ABS, Principal
	zation	Securitized	any specific credit risk feature	only, Interest only in-
	ZatiOII	Instru-	any specific credit risk feature	struments
		ments		struments
		Market		
		Risk		
		SCRCR:	Instruments bundled and traded in tranches that in-	CDOs
		Securitized	clude specific credit risk feature	
		instrument	•	
		Credit Risk		
		Feature		
	Symmetr	icMRGNG	A generic margining contract governing the agreement	
			of margining usually present at central clearing houses	
		FUTUR:	Keeps track of value changes for any basic CT as un-	Standard interest rate,
		Future	derlying (PAM, ANN etc. but also FXOUT, STK,	FX, stock and commod-
			COM). Handles margining calls.	ity futures.
	Options	OPTNS:	Calculates straight option pay-off for any basic CT as	European, American
		Option	underlying (PAM, ANN etc.) but also SWAPS, FX-	and Bermudan options
			OUT, STK and COM. Single, periodic and continuous	with Interest rate, FX
			strike is supported.	and stock futures as
		BNDCP:	Denderation of action is according	underlying instruments Callable and puttable
		Callable or	Bonds with a call or put option. If option is exercised, underlying bond ceases to exist.	bonds or loans
		puttable	underlying bond ceases to exist.	bolids of loans
		maturity		
		contract		
		BNDWR:	Bonds with a warrant. If option is exercised, underly-	Warrants
		Bond with	ing bond continues to exist.	*** Carrainas
		warrant		
		IRXOP:	Exotic interest rate options	
		Exotic In-	1	
		terest Rate		
		Option		
		STXOP:	Exotic stock options	
		Stock Op-		
		tion		
		CMXOP:	Exotic commodity options	
		Exotic		
		Commodity		
		Option		
		FXXOP:	Exotic FX options	
		Exotic FX		
	Credit	Option CEG:	Guarantee is a credit enhancement contract. It creates	Dorgonal managet
	Creait Risk	CEG: Guarantees	a relationship between a guarantor, an obligee and a	Personal guarantee
	1012K	Guarantees	debtor, moving the exposure from the debtor to the	Government guarantee. Underlyings of CDOs.
			guarantor.	onderlyings of ODOS.
		CEC: Col-	Collateral is a credit enhancement contract. It creates	Mortgages include a col-
		lateral	a relationship between a collateral an obligee and a	lateral contract. Any
		1000101	debtor, covering the exposure from the debtor with	coverage with financial
			the collateral.	or physical collateral
		CDSWP:	All sorts of credit default swaps	Piljoion conductan
		Credit	22-23 of orodic dotadic Smapo	
		Default		
		Swap		
		*	Continued on nert page	

Family	Class	Type	Description	Covered contracts
		CRSWP:	All sorts of total return swaps	
		Total Re-		
		turn Swap		
		CLNTE:	All sorts of credit linked notes	
		Credit		
		Linked		
		Note		

Table 1: Financial contract taxonomy

3. Notations

3.1. Contract Attributes. Contract Attributes (attributes) represent the legal contractual terms that define the exchange of cash-flows of a financial contract. Attributes are introduced by the ACTUS data standard and described in the ACTUS Data Dictionary (DD). Different data types exist and are defined in the DD. In particular, scalar-type and vector-type attributes are defined. Throughout this document the attribute short name is used according to the DD. Further, vector-type attributes may be indexed with a subscript indicating that a specific vector-element is referenced.

Example 1 (Contract Attribute). The ACTUS attribute Initial Exchange Date is represented in short form IED.

Example 2 (Element of Vector-Type Attribute). The ACTUS attribute Array Cycle Anchor Date of Principal Redemption is a vector-type attribute and represented as ARPRANX. The i-th element of the vector is referenced by ARPRANX_i.

3.2. Ø-Operator. The Ø-operator is used to indicate that a certain property is undefined or, in other words, that no value has been assigned to the respective property. In particular, for optional contract attributes it means that the attribute is not defined and for schedule times (see section 4.1) it means that the respective schedule is empty, i.e. no schedule time defined.

Example 3 (Undefined Attribute). $IPANX = \emptyset$ indicates that attribute IPANX is undefined.

Example 4 (Empty Schedule). $\vec{t}^{TP} = \emptyset$ means the same as $\vec{t}^{TP} = \{\}$, with $\{\}$ the empty set, and states that the IP schedule \vec{t}^{TP} does not contain a schedule time.

3.3. t_0 -Time. t_0 marks the time as per which the state of a contract is represented in form of the respective set of attributes. Status Date SD itself is an attribute of the contract. In general, from the contractual logic we are able to derive any contractual events and contract states for any time $t > t_0$.

3.4. State Variables. State Variables describe the inner state of a financial contract at a certain point in time t during its lifetime such as (outstanding) Nominal Value, applicable Interest Rate, or the contract performance through Contract Status. State Variables are written in the short form as defined in table 3 with first letter capitalized, printed in bold, and indexed with time.

Example 5 (State Variables). Nvl_t refers to the State Variable Nominal Value observed at per time t.

3.5. Contract Events. A contract event e_t^k refers to any contractually scheduled or un-scheduled event at a certain time t and of a certain type k. Contract events mark specific points in time during the lifetime of a financial contract at which a cash flow is being exchanged (see section 3.7) or the State Variables of the contract are being updated (see section 3.6). Contract Events types k are written in the short form as defined in table 4.

As an event always has an associated event time t and payoff $c \in \mathbb{R}$ we define two operators allowing to retrieve these quantities for any single event e_t^k or set of events $\{e_t^k, e_t^j, \ldots\}$ as follows:

these quantities for any single event
$$e_t$$
 or s $\{e_t^k, e_s^j, ...\}$ as follows;
$$\tau(x) = \begin{cases} t & \text{if } x = e_t^k \\ \{t, s, ...\} & \text{else if } x = \{e_t^k, e_s^j, ...\} \end{cases}$$

$$f(x) = \begin{cases} c & \text{if } x = e_t^k \\ \{c_1, c_2, ...\} & \text{else if } x = \{e_t^k, e_s^j, ...\} \end{cases}$$
 with $c_1 = f(e_t^k), c_2 = f(e_s^j),$

Example 6 (Contract Events). The Initial Exchange Date event with event time s is written as e_s^{IED} with $\tau(e_s^{IED}) = s$ and $f(e_s^{IED}) = c$ where for any contract type CT = CT = CT = CT.

3.6. State Transition Functions. State Transition Functions (STF) define how the State Variables are being updated when a certain Contract Event e^k_t applies from a pre-event (i.e. pre-time t) state indexed t^- to a post-event (i.e. post-time t) state indexed t^+ . These functions are specific to a certain Contract Event and Contract Type. STFs are written according to the following pattern STF_[event type]_[contract type]() where [event type] and [contract type refer to the respective event type and contract type to which the STF belongs.

Example 7 (State Transition Functions). The STF for an IP event and PAM contract is written as $STF_IP_PAM()$ and maps e.g. state variable Nominal Accrued from a pre-event state Nac_{t^-} to post-event state Nac_{t^+} .

3.7. Payoff Functions. Payoff Functions (POF) define how the cash flow $c \in \mathbb{R}$ for a certain Contract Event e^k_t is being derived from current State Variables and Contract Attributes. If necessary, the resulting cash flow can be indexed with the event time c_t . These functions are specific to a certain Contract Event and Contract Type. POFs are written according to the following pattern POF_[event type]_[contract type]() where [event type] and [contract type] refer to the respective event type and contract type to which the STF belongs.

Example 8 (Payoff Functions). The POF for an IP event e_t^{IP} and PAM contract is written as POF_IP_PAM() with $f(e_t^{IP}) = POF_IP_PAM()$.

3.8. **Date/Time.** ACTUS builds on the ISO 8601 date/time format. Hence, dates are generally expressed in the following format: [YYYY]-[MM]-[DD]T[hh]:[mm]:[ss]. Time zone information is currently not supported.

A special case is *midnight*. ISO 8601 recognizes both times 00:00:00 and 24:00:00 each referring to midnight. Yet, while 24:00:00 refers to the end of one day, 00:00:00 refers to the beginning of the following day. In ACTUS the interpretation is the same why the time period (measured in any time unit) between the two points in time will always be zero.

For brevity, we use the term time for a specific date-time variable and in particular abbreviation Tev for the date of a Contract Event.

- 3.9. Event Sequence. Contract Events of different types may occur at the same time, i.e. exactly the same point in time. In this case, the sequence of evaluating their State Transition and Payoff Functions is decisive for the resulting cash flows and state updates. The Event Sequence given for all events in table 4 defines the order in which these functions are evaluated for the respective event types.
- 3.10. Contract Lifetime. The lifetime of an ACTUS contract is the time period of its existence from the perspective of the analyzing user. For every point in time during its lifetime, an ACTUS contract can be analyzed in terms of current State Variables and future cash flows.

The lifetime of a contract starts with its SD and ends with $\min(MD, AMD, PR^*, STD, TD, t^{max})$.

Note that PR^* refers to the PR event of a maturity contract after which $\mathbf{Nvl} = 0.0$ (i.e. at which the remaining outstanding principal is redeemed). Further, MD, AMD, and $PR(\mathbf{Nvl} = 0.0)$ in the definition above do only apply for maturity contracts but have to be considered infinity in all other cases. Similarly, STD only applies for certain contracts and is considered infinity for all others. Finally, t^{max} is a parameter that may be used to restrict the considered lifetime in an analysis. In particular, this parameter is used for contracts that do not have a natural end to their lifetime such as STK.

4. Utility Functions

4.1. Schedule. A schedule is a function S mapping times s,T with s < T and cycle c onto a sequence \vec{t} of cyclic times

$$S(s,c,T) = \vec{t} = \begin{cases} \{\} & \text{if} \quad s = \emptyset \land T = \emptyset \\ s & \text{else if} \quad T = \emptyset \\ (s,T) & \text{else if} \quad c = \emptyset \\ (s=t_1,...,t_n = T) & \text{else} \end{cases}$$

with $t_i < t_{i+1}, i = 1, 2, ...$ While the schedule function can be used to create arbitrary sequences of times, it is usually used to generate sequences of cyclic events \bar{t}^k of a certain type k, e.g. k = IP for interest payment events (cf. table 4) and the following build inputs to the function

- $s=k {\tt ANX}$ with $k {\tt ANX}$ attribute cycle anchor date of event type k
- c = kCL with kCL event type k's schedule cycle
- T = MD with MD the contract's maturity

Thereby, cycles kCL have format NPS where

N is an integer

P is a time period unit (D=Day, W=Week, M=Month, Q=Quarter, H=Half Year, Y=Year)

S is a stub information (+=long last stub, -=short last stub)

Further, the last stub is defined as follows

if $t_{n-1} + c = T \vee S =$ '-' then no stub correction applies

else t_n is removed from the schedule

The sequence of schedule times \bar{t}^k may also be influenced by the EOF and BDC conventions and the full function syntax becomes S(s,c,T,EOMC,BDC). Due to such effects the sequence of schedule times can be non-equidistant or, in other words, $t_i^k - t_{i-1}^k \neq t_j^k - t_{j-1}^k, i \neq j$.

Note that for brevity we will omit the EOMC and BDC function arguments throughout this document.

4.2. **Array Schedule.** Array Schedules are defined by vector-valued inputs $\vec{s} = (s_0, s_1, ..., s_m)$ and $\vec{c} = (c_0, c_1, ..., c_m)$ to the regular schedule function

$$S(\vec{s}, \vec{c}, T) = (S(s_0, c_0, s_1 - c_0),$$

$$S(s_1, c_1, s_2 - c_1), ..., S(s_m, c_m, T))$$

Hence, array schedules are a generalization for regular schedules which coincide for m=1. In accordance with regular schedules EOMC and BDC conventions also apply here.

4.3. End Of Month Shift Convention. For schedules t^k starting at time s which marks the end of a month with 30 or less days, e.g. April 30, and with a cycle c being a multiple of 1M- attribute EOM defines whether the schedule times are to fall on the 30th of all months (same day) or the 31st (end of month).

More specifically, EOM has an effect on a schedule \vec{t}^k only if

- s is the last day of a month with less than 31 days (Feb, April etc.)
- c = NPS with $P \in (M, Q, HorY)$

As per the DD EOM can take one of the following values:

EOM (EndOfMonth): times $t_i, i = 1, 2, ..., n - 1$ are moved to the end of the respective months

- SD (SameDay): times t_i , i = 1, 2, ..., n-1 remain unchanged except in February, where it will go to the last day if the day of month of time s is higher than the number of days of February
- 4.4. Business Day Shift Convention. In general, contract events are scheduled for business days only. Therefore, the BDC convention defines how scheduled times $t_i, i=1,2,...,n-1$ are shifted in case they fall on a non-business day:

NULL: No shift

SCF: Shift/Calculate following: The event is shifted to the following non working day. Calculation of the event happens after the shift

SCMF: Shift/Calculate modified following: The event is shifted to the following non working day. However, if the following day happens to fall into the next month, then take preceding non-working day. Calculation of the event happens after the shift

CSF: Calculate/Shift following: Same like SCF however calculation of the event happens before the shift

CSMF: Calculate/Shift modified following: Same like SCMF however calculation of the event happens before the shift

SCP: Shift/Calculate preceding: The event is shifted to the last preceding non working day. Calculation of the event happens after the shift

SCMP: Shift/Calculate modified preceding: The event is shifted to the last preceding non working day. However, if the preceding day happens to fall into the previous month, then take next non-working day. Calculation of the event happens after the shift

CSP: Calculate/Shift preceding: Same like SCP however calculation of the event happens before the shift

CSMP: Calculate/Shift modified preceding: Same like SCMP however calculation of the event happens before the shift

4.5. Business Day Calendar. Whether a specific day is a business day (cf. previous section) is defined by attribute CLDR. Such conventions generally depend on regional official holiday calendars. The Business Day Function interface allows determining for some CLDR whether any time t is a business day or not

$$B: t \mapsto \{true, false\}$$

where true indicates that t is a business day and false that it is a holiday.

Example 9. Two standard CLDR implementations are the following

- NoHoliday (default): every calendar day is a business day
- MondayToFriday: all weekdays Monday, Tuesday, Wednesday, Thursday, and Friday are business days
- 4.6. Year Fraction Convention. Interest income and other calculations are based on $per\ annum$ interest rates. Therefore, the year-fraction function interface Y is used to calculate the $fraction\ of\ a\ year$ between any two times s and t with t>s for which e.g. an (per annum) interest rate applies according to some day count convention DCC

$$Y:s,t,\mathrm{DCC}\mapsto\mathbb{R}$$

Note, the year fraction function interface only defines the structure of year fraction functions but not an actual implementation thereof, or the respective DCC, respectively. Therefore, any DCC can be implemented according to the interface above supporting user-defined year fraction functions.

For brevity we will omit the DCC function argument wherever this does not lead to confusion.

4.7. Contract Role Sign Convention. The two counterparties to a financial contract are defined through attributes LEIRC and LEICP. The first is the party initially creating the contract and the second is the counterparty, respectively. Thereby, both LEIRC/LEICP can take any role in the contract or, more specifically, they can be the lender or borrower in a loan (PAM), fixed receiver or payer in an interest rate swap (SWAPS), etc.

The *role* of the LEIRC is defined through attribute CNTRL. The *role* of LEICP is derived as the *opposite* side to the contract. Apart from CNTRL the attributes are *neutral* to the *role* of LEIRC (or LEICP).

On the other hand, contractual cash flows generated by the POFs and certain state variables are *role-sensitive*. That is, from the perspective of the LEIRC these quantities represent either claims or obligations. Contract Role Sign function R maps the CNTRL attribute into +1 indicating a claim or -1 indicating an obligation

$$R:\mathtt{CNTRL}\to\{-1,+1\}$$

When multiplying with a cash flow x the Contract Role Sign function thereby defines the direction of that flow:

x > 0: x flows from LEICP to LEIRC

x < 0: x flows from LEIRC to LEICP

Table 2 defines the domain of the Contract Role Sign function, i.e. the range of attribute CNTRL, with meaning and Contract Role Sign to which the function maps.

Value	Meaning	R
RPA	Real position asset	+1
RPL	Real position liability	-1
CLO	Role of a collateral	+1
CNO	Role of a close-out-netting	+1
COL	Role of an underlying to a	+1
	collateral	
LG	Long position	+1
ST	Short position	-1
BUY	Protection buyer	+1
SEL	Protection seller	-1
RFL	Receive first leg	+1
PFL	Pay first leg	-1
RF	Receive fix leg	+1
PF	Pay fix leg	-1

Table 2. Contract Role definitions.

4.8. Contract Default Convention. Performance of a contract indicates whether as per a certain time all parties involved adhere to their obligations arising from the contract. Attribute CTS captures a contract's performance as per t_0 . For any time $t > t_0$ and depending on the behavior of the parties involved the contract can migrate into different contract (performance) statuses from 'performing' to 'default'. State variable \mathbf{Prf}_t (cf. table 3) captures these dynamics and the performance as per any time $t > t_0$.

The Contract Default Convention is a function D that maps the \mathbf{Prf}_t state variable into +1 indicating that the contract is performing or 0 which reflext default and, from an analytical perspective, means that future cash flows cancel out:

$$D(\mathbf{Prf}_t) = \begin{cases} 1 & \text{if } \mathbf{Prf}_t \neq \text{'D'} \\ 0 & \text{else} \end{cases}$$

4.9. **Annuity Amount Function.** In an *Annuity* contract (ANN) the annuity amount is paid regularly from the borrower to the lender. Thereby, the annuity amount is comprised of a principal repayment portion and an interest portion and and dimensioned such that the total nominal amount n at time t is fully repaid at maturity T of the annuity. The Annuity Amount function A(,c,o,m,p) utes the annuity amount as follows

$$A(s,T,n,a,r) = (n+a) \frac{\prod_{i=1}^{m-1} 1 + rY(t_i, t_{i+1},)}{1 + \sum_{i=1}^{m-1} \prod_{j=i}^{m-1} 1 + rY(t_j, t_{j+1})}$$

with a the accrued interest as per time s, r the actual interest rate, $t_i, i = 1, 2, ..., m$ the schedule times $\inf t, t \in \vec{t}^{PR} \wedge t > s$, m the number of times t_i , and \vec{t}^{PR} the PR-event schedule times of the Annuity contract as described in section 9.5.

5. Contract State Variables

Driven by Contract Events (see section 3.5) certain contractual dimensions, state variables, of financial contracts may change during the lifetime of a financial contract. Thereby, the set of State Variables varies for different CTs. Table 3 represents the set of all covered State Variables throughout the universe of CTs.

By definition, State Variables are updated through Contract Events only. The value of State Variables always shows the state of the contract **after** the respective Contract Event.

Name	Abbr	vExplanation	
Performance	\mathbf{Prf}_t	Contract performance	
Last Event	\mathbf{Led}_t	The date of the most recent Con-	
Date		tract Event	
Nominal	$\mathbf{N}\mathbf{vl}_t$	The outstanding nominal value	
Value			
Secondary	$\mathbf{N}\mathbf{v2}_t$	t The outstanding nominal value	
Nominal		of the second leg	
Value			
Nominal Rate	\mathbf{Nrt}_t	The applicable nominal rate	
Nominal Ac-	\mathbf{Nac}_t	The current value of nominal ac-	
crued		crued interest at the Nominal	
		Rate	
Interest Cal-	\mathbf{Icb}_t	The basis at which interest is	
culation Base		being accrued if different from	
		$\mathbf{N}\mathbf{vl}_t$	
Notional Scal-	\mathbf{Nsc}_t	The multiplier being applied to	
ing Multiplier		Notional/Principal related cash-	
		flows	
Interest Scal-	\mathbf{Isc}_t	The multiplier being applied to	
ing Multiplier		Interest related cash-flows	
Next Prin-	\mathbf{Npr}_t	The value at which $\mathbf{N}\mathbf{v}\mathbf{l}_t$ is being	
cipal Re-		repaid. This may be including or	
demption		excluding of interest depending	
Payment		on the instrument	
Payoff at Set-	\mathbf{Pos}_t	The payoff of the contract if	
tlement		fixed at time t . If evaluated dur-	
		ing the lifetime of the contract	
		this quantity gives a hypotheti-	
		cal payoff (e.g. for an OPTNS	
		contract it defines whether the	
		option is in-the-money or not).	

Table 3. State variables

6. Contract Event Types

An overview and description of various event types can be found in table 4.

Type	Name	Explanation	Seq.
IED	Initial Exchange Date	Scheduled date of first principal event, start of accrual calcu-	1
		lation	
IPCI	Interest Capitalization	Scheduled interest payment which is capitalized instead of	2
		paid out	
IP	Interest Payment	Scheduled interest payment	3
FP	Fee Payment	Scheduled fee payment	4
PR	Principal Redemption	Scheduled principal redemption payment	5
PΙ	Principal Increase	Scheduled principal increase payments	6
PRF	Principal Payment Amount Fixing	Scheduled re-fixing of principal payment (PR or PI) amount	7
PY	Penalty Payment	Payment of a penalty (e.g. due to early repayment of principal	8
		outstanding)	
PP	Principal Prepayment	Unscheduled (early) repayment of principal outstanding	9
CD	Credit Default	Credit event of counterparty to a contract	10
RRF	Rate Reset Fixed	Scheduled rate reset event where new rate is already fixed	11
RR	Rate Reset Variable	Scheduled rate reset event where new rate is fixed at event	12
		time	
DV	Dividend Payment	Scheduled (e.g. announced) dividend payment	13
PRD	Purchase Date	Purchase date of a contract bought in the secondary market	14
MR	Margin Call Date	Scheduled margin call event	15
TD	Termination Date	Sell date of a contract sold in the secondary market	16

Type	Name	Explanation	Seq.
SC	Scaling Index Revision	Scheduled re-fixing of a scaling index	17
IPCB	Interest Payment Calculation Base	Scheduled update to the calculation base for IP accruing	18
XD	Execution Date	Scheduled or unscheduled execution of e.g. an OPTNS or	19
		FUTUR contract	
STD	Settlement Date	Date when payment for derivatives is settled	20
MD	Maturity Date	Scheduled maturity or expiry of a contract	21
AD	Analysis Event	Retrieves current contract states without alter these	22

Table 4: Contract Events Definitions.

7. RISK FACTOR OBSERVER

The payoff of financial contracts always depends on the context in which it is evaluated and which is comprised of the following dimensions; counterparties, markets, and behavioral factors. We refer to these as the risk factors to which financial contracts are exposed to. This indicates that these factors are source of uncertainty because financial contracts only reference the factors but their dynamics is outside the control of any contractual agreement. Thus, such factors have to be observed and their changing states accounted for when evaluating the payoff of financial contracts. Therefore, we consider a standardized interface $O^o(i,t,S,M)$ that allows for observing; (1) the state of a certain risk factor i at any time t if o ='rf'

$$O^{rf}: i, t, S, M \mapsto \mathbb{R}$$

and (2) contractual but non-scheduled events if o = ev

$$O^{ev}: i, t, S, M \mapsto \{e_t^k, e_s^l, ...\}$$

The parameters to the Risk Factor Observer interface are as follows:

- i: the identifier of the risk factor observed
- $t\,:\,$ the time for which the risk factors state should be evaluated
- $S\,:\,$ the inner states of the contract at time t
- M: the contract terms of the contract as per time t Note that the observer interface only defines the structure of an actual observer function but not the actual implementation. Thus, the interface allows for user-defined implementations of observer functions allowing e.g. for representing arbitrary assumptions on the evolution of future risk factor states which is key for any type of forward-looking analysis.

Example 10 ('rf'-Observer). The market-driven 3-month USD-Libor reference rate used as the variable rate in a variable rate loan contract is observed at any time t through $O^{rf}({\tt MarketObjectCodeRateReset},t)$.

Example 11 ('rf'-Observer). Unscheduled (pre-) repayments of outstanding notional in a mortgage contract is observed at any time t through $O^{ev}(\mathit{CID},t)$.

For brevity we will omit the S and M function arguments wherever this does not lead to confusion.

8. CHILD CONTRACT OBSERVER

The payoff of certain contracts, i.e. of *Combined Contracts* according to the taxonomy in 1, is derived from certain quantities of child contracts. Often times, such contracts are referred to as *underlying instruments* or simply *underlyers* as they build the basis for the payoff of the *parent*

contract. Therefore, we consider a standardized interface U^o that allows for *observing* on the parent level; (1) all future events, w.r.t. time t, if $o = e^v$

$$U^{ev}: i, t, a \mapsto \{e_v^k, e_w^l, ...\}$$

with v, w > t and event types k, l according to the schedule of the child contract, (2) a certain state variable x if o = 'sv'

$$U^{sv}: i, t, x, a \mapsto \mathbb{R},$$

or (3) a particular contract attribute x of the child contract if o = ca

$$U^{ca}:i,x\mapsto y$$

with y a variable of value type of the respective attribute as per DD.

The parameters to the Child Contract Observer interface are as follows:

- i: the identifier of the child contract observed
- t: for $o \in \{\mathit{ev}, \mathit{sv}\}$ the time for which the respective quantity should be evaluated
- x : for $o \in \{sv, ca\}$ the quantity to be evaluated
- a : for $o \in \{ev, sv\}$ a set of contract attributes to which the evaluated quantity should be conditioned

Note that the observer interface only defines the structure of an actual observer function but not the actual implementation. Thus, the interface allows for user-defined implementations of observer functions allowing e.g. for using arbitrary data structures.

Example 12 ('ev'-Observer). The future events, w.r.t. time t, of the first leg (i.e. child contract identified by FirstLeg) of a SWAPS contract with CNTRL = PFL (i.e. pay first leg) can be evaluated as $U^{ev}(FirstLeg, t \mid \{CNTRL = RPL\})$.

Example 13 ('sv'-Observer). The current state, w.r.t. time t, of state variable Nvl of the first leg (i.e. child contract identified by FirstLeg) of a SWAPS contract with CNTRL = RFL (i.e. receive first leg) can be evaluated as $U^{sv}(FirstLeg, t, Nvl \mid \{CNTRL = RPA\})$.

Example 14 ('ca'-Observer). The contract attribute MOC of the child contract Child (i.e. child contract identified by Child) of an OPTNS contract can be evaluated as $U^{ca}(Child, MOC)$.

For brevity we will omit the x and a function arguments wherever this does not lead to confusion.

9. Contract Types

9.1. PAM: Principal At Maturity.

PAM: Contract Schedule

Event	Schedule	Comments
AD	$\vec{t}^{AD} = (t_0, t_1,, t_n)$	With t_i , $i = 1, 2,$ a custom input
IED	$t^{IED} = IED$	
PR	$t^{PR} = \mathbf{Tmd}_{t_0}$	
PP	$t^{PR} = \mathbf{Tmd}_{t_0}$ $\vec{t}^{PP} = \begin{cases} \emptyset & \text{if PPEF} = \text{'N'} \\ (\vec{u}, \vec{v}) & \text{else} \end{cases}$	with \emptyset if $\mathbb{O}PANX = \emptyset \land \mathbb{O}PCL = \emptyset$
	where $\vec{u} = S(s, \mathtt{OPCL}, T^{MD})$	$s = \begin{cases} \varnothing & \text{if } OPANX = \varnothing \land OPCL = \varnothing \\ IED + OPCL & \text{else if } OPANX = \varnothing \\ OPANX & \text{else} \end{cases}$
	$ec{v} = O^{rf}(exttt{PPMO},t)$	(UPANA eise
PY	$ \bar{t}^{PY} = \begin{cases} \emptyset & \text{if PYTP} = \text{'O'} \\ \bar{t}^{PP} & \text{else} \end{cases} $	
FP	$ \vec{t}^{PY} = \begin{cases} \varnothing & \text{if PYTP = 'O'} \\ \vec{t}^{PP} & \text{else} \end{cases} $ $ \vec{t}^{FP} = \begin{cases} \varnothing & \text{if FER = } \varnothing \lor \text{FER = 0} \\ S(s, \text{FPCL}, T^{MD}) & \text{else} \end{cases} $	with
		$s = \begin{cases} \varnothing & \text{if } \text{FPANX} = \varnothing \land \text{FPCL} = \varnothing \\ \text{IED} + \text{FPCL} & \text{else if } \text{FPANX} = \varnothing \\ \text{FPANX} & \text{else} \end{cases}$
PRD	$t^{PRD} = \mathtt{PRD}$	
TD	$t^{TD} = \mathtt{TD}$	
IP	$ar{t}^{\mathcal{I}P} = egin{cases} \varnothing & \text{if IPNR} = \mathrm{'O'} \\ S(s, \mathrm{IPCL}, T^{MD}) & \text{else} \end{cases}$	with
		$s = \begin{cases} \varnothing & \text{if} \text{IPANX} = \varnothing \land \text{IPCL} = \varnothing \\ \text{IPCED} & \text{else if} \text{IPCED} \neq \varnothing \\ \text{IED} + \text{IPCL} & \text{else if} \text{IPANX} = \varnothing \\ \text{IPANX} & \text{else} \end{cases}$
	$ar{t}^{ extsf{TPCI}} = egin{cases} arnothing & ext{if IPCED} = arnothing \ S(s, ext{IPCL}, ext{IPCED}) & ext{else} \end{cases}$	$s = \begin{cases} \varnothing & \text{if IPANX} = \varnothing \land \text{IPCL} = \varnothing \\ \text{IED} + \text{IPCL else if IPANX} = \varnothing \\ \text{IPANX} & \text{else} \end{cases}$
	$\vec{t}^{RR} = \begin{cases} \varnothing & \text{if} \text{RRANX} = \varnothing \land \text{RRCL} = \varnothing \\ \vec{t} \setminus t^{RRY} & \text{else if} \text{RRNXT} \neq \varnothing \\ \vec{t} & \text{else} \end{cases}$ where $\vec{t} = S(s, \text{RRCL}, T^{MD})$	with $s = \begin{cases} \texttt{IED} + \texttt{RRCL} & \text{if} \texttt{RRANX} = \varnothing \\ \texttt{RRANX} & \text{else} \end{cases}$ $t^{RRY} = \inf t \in \vec{t} \mid t > \texttt{SD}$
RRF	$t^{RRF} = \begin{cases} \varnothing & \text{if} \text{RRANX} = \varnothing \land \text{RRCL} = \varnothing \\ \inf t \in \vec{t} \mid t > \text{SD} & \text{else} \end{cases}$ where $\vec{t} = S(s, \text{RRCL}, T^{MD})$	$s = \begin{cases} \texttt{IED} + \texttt{RRCL} & \text{if} & \texttt{RRANX} = \varnothing \\ \texttt{RRANX} & \text{else} \end{cases}$
SC	$ec{t}^{SC} = \begin{cases} \varnothing & \text{if SCEF} = \text{'}000\text{'} \\ S(s, \text{SCCL}, T^{MD}) & \text{else} \end{cases}$	with $s = \begin{cases} \varnothing & \text{if } SCANX = \varnothing \land SCCL = \varnothing \\ IED + SCCL & \text{else if } SCANX = \varnothing \\ SCANX & \text{else} \end{cases}$
CD	$t^{CD} = O^{ev}(LEICP, t_0)$	
	- 1/	

PAM: State Variables Initialization

	1 AVI. State Variables initialization			
State	Initialization per t_0	Comments		
Tmd	$\mathbf{Tmd}_{t_0} = \mathtt{MD}$			
Nvl	$\mathbf{Nvl}_{t_0} = egin{cases} 0.0 & ext{if IED} > t_0 \ R(ext{CNTRL}) imes ext{NT} & ext{else} \end{cases}$			
Nrt	$\mathbf{Nrt}_{t_0} = egin{cases} 0.0 & ext{if} & ext{IED} > t_0 \ ext{IPNR} & ext{else} \end{cases}$			

State	Initializa	ation per t_0	• •	Comments
Nac	$\mathbf{Nac}_{t_0} =$	$\begin{cases} 0.0 \\ \text{IPAC} \\ Y(t^-, t_0) \times \mathbf{Nvl}_{t_0} \times \mathbf{Nrt}_{t_0} \end{cases}$	$\begin{array}{ll} \text{if} & \mathtt{IPNR} = \varnothing \\ & \text{else if} & \mathtt{IPAC} \neq \varnothing \\ & \text{else} \end{array}$	with $t^- = \sup t \in \bar{t}^{TP} \mid t < t_0$
Fac	$\mathbf{Fac}_{t_0} = \langle$	$ \begin{cases} 0.0 & \text{i} \\ \text{FEAC} & \text{o} \\ Y(t^-,t_0) \times \mathbf{Nvl}_{t_0} \times \text{FER} & \text{o} \\ \frac{Y(t^{FP-},t_0)}{Y(t^{FP-},t^{FP+})} \times \text{FER} & \text{o} \end{cases} $	if $FER = \emptyset$ else if $FEAC \neq \emptyset$ else if $FEB = 'N'$	with $t^{FP-} = \sup t \in \vec{t}^{FP} \mid t < t_0$ $t^{FP+} = \inf t \in \vec{t}^{FP} \mid t > t_0$
Nsc	$\mathbf{Nsc}_{t_0} = \mathbf{c}$	$\begin{cases} SCIXSD & \text{if } SCEF = '[x]N[x] \\ 1.0 & \text{else} \end{cases}$	x]'	
Isc	$\mathbf{Isc}_{t_0} = igg\{$	SCIXSD if SCEF = $I[x][x]$ 1.0 else	,	
Prf	$\mathbf{Prf}_{t_0} = \mathtt{CTS}$			
Led	$\mathbf{Led}_{t_0} = t$	0		

PAM: State Transition Functions and Payoff Functions

Event	Payoff Function	State Transition Function
		$\mathbf{Nac}_{t^+} = \mathbf{Nac}_{t^-} + Y(\mathbf{Led}_{t^-1}, t)\mathbf{Nrt}_{t^-}\mathbf{Nvl}_{t^-}$
AD	0.0	$\mathbf{Led}_{t^+} = t$
		$\mathbf{Nvl}_{t^+} = R(\mathtt{CNTRL})\mathtt{NT}$
		$\mathbf{Nrt}_{t^+} = egin{cases} 0.0 & ext{if} & ext{IPNR} = arnothing \ & ext{IPNR} & ext{else} \end{cases}$
IED	$D(\mathbf{Prf}_{t^-})R(\mathtt{CNTRL})(-1)(\mathtt{NT}+\mathtt{PDIED})$	IPAC if IPAC $\neq \varnothing$
		$ \mathbf{Nac}_{t+} = \begin{cases} v \mathbf{Nvl}_{t+} \mathbf{Nrt}_{t+} & \text{if } \mathbf{IPANX} \neq \emptyset \land \mathbf{IPANX} < t \end{cases}$
		$\mathbf{Nac}_{t^+} = \begin{cases} \mathtt{IPAC} & \text{if} \mathtt{IPAC} \neq \varnothing \\ y\mathbf{Nvl}_{t^+}\mathbf{Nrt}_{t^+} & \text{if} \mathtt{IPANX} \neq \varnothing \land \mathtt{IPANX} < t \\ 0.0 & \text{else} \end{cases}$
		$\mathbf{Led}_{t+} = t$
		$\begin{array}{c} \mathbf{Led}_{t^+} = t \\ \mathbf{with} \end{array}$
		y = Y(IPANX, t)
		$\mathbf{N}\mathbf{v}\mathbf{l}_{t^+} = 0.0$
PR	$D(\mathbf{Prf}_{t^-})\mathbf{Nsc}_{t^-}\mathbf{Nvl}_{t^-}$	$\mathbf{Nrt}_{t^+} = 0.0$
		$\mathbf{Led}_{t^+} = t$
		$\mathbf{Nac}_{t^+} = \mathbf{Nac}_{t^-} + Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Nvl}_{t^-}$
PP	$D(\mathbf{Prf}_{t^-})O^{rf}(\mathtt{OPMO},t)$	$\mathbf{Fac}_{t^+} = \begin{cases} \mathbf{Fac}_{t^-} + Y(\mathbf{Led}_{t^-}, t) \mathbf{Nvl}_{t^-} \mathbf{FER} & \text{if} \mathbf{FEB} = \mathrm{'N'} \\ \frac{Y(t^{FP}, t)}{Y(t^{FP}, t^{FP_+})} \mathbf{FER} & \text{else} \end{cases}$
		$\mathbf{N}\mathbf{v}\mathbf{l}_{t^+} = \mathbf{N}\mathbf{v}\mathbf{l}_{t^-} - O^{rf}(\mathtt{OPMO},t)$
		$\mathbf{Led}_{t^+} = t$
		with $t^{FP-} = \sup t \in \bar{t}^{FP} \mid t < t_0$
		$t^{FP+} = \inf t \in \overline{t}^{FP} \mid t > t_0$ $\mathbf{Nac}_{t^+} = \mathbf{Nac}_{t^-} + Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Nvl}_{t^-}$
	$D(\mathbf{Prf}_{t^-})R(\mathtt{CNTRL})\mathtt{PYRT}$ if $\mathtt{PYTP} = \mathrm{'A'}$	$\mathbf{Nac}_{t^+} = \mathbf{Nac}_{t^-} + Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Nvl}_{t^-}$
		$\left \mathbf{Fac}_{t-} + Y(\mathbf{Led}_{t-}, t)\mathbf{Nvl}_{t-}\mathbf{FER} \text{ if } \mathbf{FEB} = 'N' \right $
PY	cPYRT if PYTP = 'N'	$\mathbf{Fac}_{t^{+}} = \begin{cases} \mathbf{Fac}_{t^{-}} + Y(\mathbf{Led}_{t^{-}}, t)\mathbf{Nvl}_{t^{-}}\mathbf{FER} & \text{if } \mathbf{FEB} = \mathbf{'N'} \\ \frac{Y(t^{FP^{-}}, t)}{Y(t^{FP^{-}} + t^{FP^{+}})}\mathbf{FER} & \text{else} \end{cases}$
	$c\max(0,\mathbf{Nrt}_{t^-}-O^{rf}(\mathtt{RRMO},t)) \text{ if } \mathtt{PYTP}=\mathrm{'I'}$	$(Y_{(t^{FP}-,t^{FP}+)})^{\bullet}$ Led _{t+} = t
	with	6.
	$c = D(\mathbf{Prf}_{t^-})R(\mathtt{CNTRL})Y(\mathbf{Led}_{t^-},t)\mathbf{Nvl}_{t^-}$	
		$\begin{aligned} & t^{FP+} = \inf t \in \vec{t}^{FP} \mid t > t_0 \\ & \mathbf{Nac}_{t^+} = \mathbf{Nac}_{t^-} + Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Nvl}_{t^-} \end{aligned}$
	c if $FEB = 'A'$	$\mathbf{Nac}_{t^+} = \mathbf{Nac}_{t^-} + Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Nvl}_{t^-}$
FP	$cY(\mathbf{Led}_{t^-}, t)\mathbf{Nvl}_{t^-} + \mathbf{Fac}_{t^-}$ if FEB = 'N'	$\mathbf{Fac}_{t^+} = 0.0$
	with	$\mathbf{Led}_{t^+} = t$
	$c = D(\mathbf{Prf}_{t^-})R(\mathtt{CNTRL})FER$	
	~	

Continued from previous page

Payoff Function	State Transition Function
	$\mathbf{Nac}_{t^+} = \mathbf{Nac}_{t^-} + Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Nvl}_{t^-}$
$ \begin{vmatrix} D(\mathbf{Prf}_{t^-})R(\mathtt{CNTRL})(-1)(\mathtt{PPRD} + \mathbf{Nac}_{t^-} + \\ Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Nvl}_{t^-}) \end{vmatrix} $	$\mathbf{Fac}_{t^+} = \begin{cases} \mathbf{Fac}_{t^-} + Y(\mathbf{Led}_{t^-}, t) \mathbf{Nvl}_{t^-} \mathbf{FER} & \text{if} \mathbf{FEB} = \mathrm{'N'} \\ \frac{Y(t^{FP^-}, t)}{Y(t^{FP^-}, t^{FP^+})} \mathbf{FER} & \text{else} \end{cases}$
	$\mathbf{Led}_{t^+} = t$
	$ \begin{array}{l} \text{with} \\ t^{FP-} = \sup t \in \bar{t}^{FP} \mid t < t_0 \end{array} $
	$t^{FP+} = \inf t \in \vec{t}^{FP} \mid t > t_0$ $\mathbf{Nvl}_{t+} = 0.0$
	$\mathbf{Nac}_{t^+} = 0.0$
$D(\mathbf{Prf}_{t^-})R(\mathtt{CNTRL})(\mathtt{PTD} + \mathbf{Nac}_{t^-} +$	$\mathbf{Fac}_{t^+} = 0.0$
$Y(\mathbf{Led}_{t^-},t)\mathbf{Nrt}_{t^-}\mathbf{NvI}_{t^-})$	$\mathbf{Nrt}_{t^+} = 0.0$
	$egin{aligned} \mathbf{Led}_{t^+} &= t \ \mathbf{Nac}_{t^+} &= 0.0 \end{aligned}$
$ \begin{vmatrix} D(\mathbf{Prf}_{t^-})\mathbf{Isc}_{t^-}(\mathbf{Nac}_{t^-} + \\ Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Nvl}_{t^-}) \end{vmatrix} $	$\mathbf{Fac}_{t^{+}} = \begin{cases} \mathbf{Fac}_{t^{-}} + Y(\mathbf{Led}_{t^{-}}, t) \mathbf{Nvl}_{t^{-}} \mathbf{FER} & \text{if } \mathbf{FEB} = \mathrm{'N'} \\ \frac{Y(t^{FP} -, t)}{Y(t^{FP} -, t^{FP} +)} \mathbf{FER} & \text{else} \end{cases}$
	$\mathbf{Led}_{t^+} = t$
	$t^{FP+} = \inf t \in \vec{t}^{FP} \mid t > t_0$ $\mathbf{Nvl}_{t+} = \mathbf{Nvl}_{t-} + \mathbf{Nac}_{t-} + Y(\mathbf{Led}_{t-}, t)\mathbf{Nvl}_{t-}\mathbf{Nrt}_{t-}$
	$\mathbf{Nac}_{t^+} = 0.0$
0.0	$\mathbf{Fac}_{t^+} = \begin{cases} \mathbf{Fac}_{t^-} + Y(\mathbf{Led}_{t^-}, t) \mathbf{Nvl}_{t^-} \mathbf{FER} & \text{if } \mathbf{FEB} = \mathbf{'N'} \\ \frac{Y(t^{FP^-}, t)}{Y(t^{FP^-}, t^{FP^+})} \mathbf{FER} & \text{else} \end{cases}$
	$\mathbf{Led}_{t^+} = t$
	with $t^{FP-} = \sup t \in \vec{t}^{FP} \mid t < t_0$
	$t^{FP+} = \inf t \in \vec{t}^{FP} \mid t > t_0$ $\mathbf{Nac}_{t^+} = \mathbf{Nac}_{t^-} + Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Nvl}_{t^-}$
0.0	$\mathbf{Fac}_{t^+} = \begin{cases} \mathbf{Fac}_{t^-} + Y(\mathbf{Led}_{t^-}, t) \mathbf{Nvl}_{t^-} \mathbf{FER} & \text{if } \mathbf{FEB} = \mathrm{'N'} \\ \frac{Y(t^{FP^-}, t)}{Y(t^{FP^-} t^{FP^+})} \mathbf{FER} & \text{else} \end{cases}$
0.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	$\mathbf{Nrt}_{t^+} = \min(\max(\mathbf{Nrt}_{t^-} + \Delta r, \mathtt{RRLF}), \mathtt{RRLC})$ $\mathbf{Led}_{t^+} = t$
	with
	$\Delta r = \min(\max(O^{rf}(\mathtt{RRMO},t)\mathtt{RRMT} + \mathtt{RRSP} - \mathbf{Nrt}_{t^-},\mathtt{RRPF}),\mathtt{RRPF}$
	$t^{FP-} = \sup t \in \vec{t}^{FP} \mid t < t_0$
	$t^{FP+} = \inf t \in \overline{t}^{FP} \mid t > t_0$ $\mathbf{Nac}_{t^+} = \mathbf{Nac}_{t^-} + Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Nvl}_{t^-}$
0.0	$\mathbf{Fac}_{t^+} = \begin{cases} \mathbf{Fac}_{t^-} + Y(\mathbf{Led}_{t^-}, t) \mathbf{Nvl}_{t^-} \mathbf{FER} & \text{if } \mathbf{FEB} = \mathbf{'N'} \\ \frac{Y(t^{FP^-}, t)}{Y(t^{FP^-}, t^{FP+})} \mathbf{FER} & \text{else} \end{cases}$
	$\mathbf{Nrt}_{t^+} = \mathtt{RRNXT}$
	$\mathbf{Led}_{t^+} = t$
	$t^{FP+} = \inf t \in \vec{t}^{FP} \mid t > t_0$
	$Y(\mathbf{Led}_{t-}, t)\mathbf{Nrt}_{t-}\mathbf{Nvl}_{t-})$ $D(\mathbf{Prf}_{t-})R(\mathbf{CNTRL})(\mathbf{PTD} + \mathbf{Nac}_{t-} + Y(\mathbf{Led}_{t-}, t)\mathbf{Nrt}_{t-}\mathbf{Nvl}_{t-})$ $D(\mathbf{Prf}_{t-})\mathbf{Isc}_{t-}(\mathbf{Nac}_{t-} + Y(\mathbf{Led}_{t-}, t)\mathbf{Nrt}_{t-}\mathbf{Nvl}_{t-})$ 0.0

Continued from previous page

Event	Payoff Function	State Transition Function
		$\mathbf{Nac}_{t^+} = \mathbf{Nac}_{t^-} + Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Nvl}_{t^-}$
		$\mathbf{Fac}_{t^+} = \begin{cases} \mathbf{Fac}_{t^-} + Y(\mathbf{Led}_{t^-}, t) \mathbf{Nvl}_{t^-} \mathbf{FER} & \text{if } \mathbf{FEB} = \mathrm{'N'} \\ \frac{Y(t^{FP}, t)}{Y(t^{FP}, t^{FP_+})} \mathbf{FER} & \text{else} \end{cases}$
SC	0.0	$\mathbf{Nsc}_{t^+} = \begin{cases} \mathbf{Nsc}_{t^-} & \text{if } \mathbf{SCEF} = [x]0[x] \\ \frac{O^{rf}(\mathbf{SCMO},t) - \mathbf{SCIED}}{\mathbf{SCIED}} & \text{else} \end{cases}$
		$\mathbf{Isc}_{t^{+}} = \begin{cases} \mathbf{Isc}_{t^{-}} & \text{if } \mathbf{SCEF} = 0[x][x] \\ \frac{O^{rf}(\mathbf{SCMO}, t) - \mathbf{SCIED}}{\mathbf{SCIED}} & \text{else} \end{cases}$
		$\mathbf{Led}_{t^+} = t$
		$t^{FP+} = \inf t \in \bar{t}^{FP} \mid t > t_0$
		$\mathbf{Nac}_{t^+} = \mathbf{Nac}_{t^-} + Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Nvl}_{t^-}$
CD	0.0	$\mathbf{Fac}_{t^{+}} = \begin{cases} \mathbf{Fac}_{t^{-}} + Y(\mathbf{Led}_{t^{-}}, t)\mathbf{Nvl}_{t^{-}}\mathbf{FER} & \text{if } \mathbf{FEB} = \mathrm{'N'} \\ \frac{Y(t^{FP_{-}}, t)}{Y(t^{FP_{-}}, t^{FP_{+}})}\mathbf{FER} & \text{else} \end{cases}$
		$\mathbf{Prf}_{t^+} = \mathrm{'D'}$
		$\mathbf{Led}_{t^+} = t$
		$t^{FP+} = \inf t \in \bar{t}^{FP} \mid t > t_0$

9.2. LAM: Linear Amortizer.

LAM: Contract Schedule

Event	Schedule	Comments
AD		Same as PAM
IED		Same as PAM
PR	$t^{PR} = S(s, PRCL, T^{MD})$	with
		$ \int \varnothing \qquad \qquad \text{if} \text{PRANX} = \varnothing \land \text{PRCL} = \varnothing $
		$s = \langle \text{IED} + \text{PRCL} \text{ else if } \text{PRANX} = \emptyset$
		PRANX else
PP		Same as PAM
PY		Same as PAM
FP		Same as PAM
PRD		Same as PAM
TD		Same as PAM
IP		Same as PAM
IPCI		Same as PAM
IPCB	$egin{aligned} ar{t}^{\mathit{IPCB}} = egin{cases} \varnothing & & \text{if IPCB} eq \ 'NTL' \ S(s, \text{IPCBCL}, T^{MD}) & & \text{else} \end{cases} \end{aligned}$	with
		$s = \begin{cases} \text{IED} + \text{IPCBCL} & \text{else if} & \text{IPCBANX} = \emptyset \end{cases}$
		(IPCBANX else
RR		Same as PAM
RRF		Same as PAM
SC		Same as PAM
CD		Same as PAM

LAM: State Variables Initialization

State	Initialization per t_0	Comments
Tmd	$\mathbf{Tmd}_{t_0} = egin{cases} \mathtt{MD} & \mathrm{ifMD} eq arnothing \ t^- + ceil(rac{\mathtt{NT}}{\mathtt{PRNXT}})\mathtt{PRCL} \end{cases}$	where f PRANX if PRANX $\neq \varnothing \land PRANX > t_0$
	,	$t^- = \left\{ \text{IED} + \text{PRCL} \right\}$ else if $\text{IED} + \text{PRCL} > t_0$
		$t^- = \begin{cases} \text{PRANX} & \text{if} \text{PRANX} \neq \varnothing \land \text{PRANX} \geq t_0 \\ \text{IED} + \text{PRCL} & \text{else if} \text{IED} + \text{PRCL} \geq t_0 \\ \sup t \in \vec{t}^{PR} \mid t < t_0 & \text{else} \end{cases}$
Nvl		Same as PAM
Nrt		Same as PAM
Nac		Same as PAM
Fac		Same as PAM
Nsc		Same as PAM
Isc		Same as PAM
Prf		Same as PAM
Led		Same as PAM
Npr	$ \mathbf{Npr}_{t_0} = \begin{cases} \text{PRNXT} & \text{if } \text{PRNXT} \neq \varnothing \\ \text{NT}(ceil(\frac{Y(s,T^{MD})}{Y(s,s+\text{PRCL})}))^{-1} & \text{else} \end{cases} $	with f PRANX if PRANX $ eq \varnothing \land PRANX > t_0$
		$s = \begin{cases} \text{IED} + \text{PRCL} & \text{else if} & \text{PRANX} = \emptyset \land \text{IED} + \text{PRCL} > t_0 \end{cases}$
		t^- else
		and where $t^- = \sup t \in \bar{t}^{PR} \mid t < t_0$
	$\int 0.0 \qquad \text{if} t_0 < \text{IED}$	
Icb	$ \mathbf{Icb}_{t_0} = \langle R(\mathtt{CNTRL})\mathtt{NT} $ else if $\mathtt{IPCB} = \mathtt{'NT'}$	
	$\mathbf{Icb}_{t_0} = egin{cases} R(\mathtt{CNTRL})\mathtt{NT} & ext{else if IPCB} = \mathrm{'NT'} \ R(\mathtt{CNTRL})\mathtt{IPCBA} & ext{else} \end{cases}$	

LAM: State Transition Functions and Payoff Functions

Event	Payoff Function State Transition Function	
AD	POF_AD_PAM()	STF_AD_PAM()
		$\mathbf{N}\mathbf{v}\mathbf{l}_{t^+} = R(\mathtt{CNTRL})\mathtt{NT}$ $\mathbf{N}\mathbf{r}\mathbf{t}_{t^+} = \mathtt{IPNR}$
IED	POF_IED_PAM()	$\mathbf{Nac}_{t+} = egin{cases} \mathtt{IPAC} & \mathrm{if} & \mathtt{IPAC} eq \varnothing \ y\mathbf{Nvl}_{t+}\mathbf{Nrt}_{t+} & \mathrm{if} & \mathtt{IPANX} eq \varnothing \wedge \mathtt{IPANX} < t \ 0.0 & \mathrm{else} \end{cases}$
		$\mathbf{Led}_{t^+} = t$ $\mathbf{Icb}_{t^+} = \begin{cases} R(\mathtt{CNTRL})\mathtt{NT} & \text{if IPCB} = \mathrm{'NT'} \\ R(\mathtt{CNTRL})\mathtt{IPCBA} & \text{else} \end{cases}$
PR	$D(\mathbf{Prf}_{t^-})R(\mathtt{CNTRL})\mathbf{Nsc}_{t^-}\mathbf{Npr}_{t^-}$	$\mathbf{N}\mathbf{v}\mathbf{l}_{t+} = \mathbf{N}\mathbf{v}\mathbf{l}_{t-} - R(\mathtt{CNTRL})\mathbf{N}\mathbf{p}\mathbf{r}_{t-}$ $\mathbf{Fac}_{t+} = \begin{cases} \mathbf{Fac}_{t-} + Y(\mathbf{Led}_{t-}, t)\mathbf{N}\mathbf{v}\mathbf{l}_{t-}\mathbf{FER} & \text{if } \mathbf{FEB} = \mathrm{N}^{2}\mathbf{N}^{2} \\ \frac{Y(t^{FP-}, t)}{Y(t^{FP-}, t^{FP+})}\mathbf{FER} & \text{else} \end{cases}$
		$\mathbf{Icb}_{t^+} = egin{cases} \mathbf{Icb}_{t^-} & ext{if} & \mathtt{IPCB} eq ext{'NT'} \ \mathbf{Nvl}_{t^+} & ext{else} \end{cases}$
		$\mathbf{Led}_{t^+} = t$
		$t^{FP+} = \inf t \in \vec{t}^{FP} \mid t > t_0$

-	Continued from previous page	To the second se
Event	Payoff Function	State Transition Function
PP	POF_PP_PAM()	$\mathbf{Nac}_{t+} = \mathbf{Nac}_{t-} + Y(\mathbf{Led}_{t-}, t)\mathbf{Nrt}_{t-}\mathbf{Icb}_{t-}$ $\mathbf{Fac}_{t+} = \begin{cases} \mathbf{Fac}_{t-} + Y(\mathbf{Led}_{t-}, t)\mathbf{Nvl}_{t-}\mathbf{FER} & \text{if } \mathbf{FEB} = \mathrm{'N'} \\ \frac{Y(t^{FP-}, t)}{Y(t^{FP-}, t^{FP+})}\mathbf{FER} & \text{else} \end{cases}$
rr	POF_PP_PAM()	$egin{aligned} \mathbf{N}\mathbf{v}\mathbf{l}_{t^+} &= \mathbf{N}\mathbf{v}\mathbf{l}_{t^-} - O^{rf}(\mathtt{OPMO},t) \ \mathbf{I}\mathbf{c}\mathbf{b}_{t^+} &= egin{cases} \mathbf{I}\mathbf{c}\mathbf{b}_{t^-} & ext{if} & \mathtt{IPCB} eq '\mathrm{N}T' \ \mathbf{N}\mathbf{v}\mathbf{l}_{t^+} & ext{else} \ \end{bmatrix} \ \mathbf{L}\mathbf{e}\mathbf{d}_{t^+} &= t \end{aligned}$
		with $t^{FP-} = \sup t \in \bar{t}^{FP} \mid t < t_0$ $t^{FP+} = \inf t \in \bar{t}^{FP} \mid t > t_0$ $\mathbf{Nac}_{t^+} = \mathbf{Nac}_{t^-} + Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Icb}_{t^-}$
PY	POF_PY_PAM()	$\mathbf{Fac}_{t^+} = \begin{cases} \mathbf{Fac}_{t^-} + Y(\mathbf{Led}_{t^-}, t) \mathbf{Nvl}_{t^-} \mathbf{FER} & \text{if} \mathbf{FEB} = \mathrm{'N'} \\ \frac{Y(t^{FP^-}, t)}{Y(t^{FP^-}, t^{FP^+})} \mathbf{FER} & \text{else} \end{cases}$
		$\mathbf{Led}_{t^{+}} = t$ with $t^{FP-} = \sup t \in \vec{t}^{FP} \mid t < t_{0}$ $t^{FP+} = \inf t \in \vec{t}^{FP} \mid t > t_{0}$
FP	POF_FP_PAM()	$t^{FP+} = \inf t \in \vec{t}^{FP} \mid t > t_0$ $\mathbf{Nac}_{t^+} = \mathbf{Nac}_{t^-} + Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Icb}_{t^-}$ $\mathbf{Fac}_{t^+} = 0.0$
		$\mathbf{Led}_{t^{+}} = t$ $\mathbf{Nac}_{t^{+}} = \mathbf{Nac}_{t^{-}} + Y(\mathbf{Led}_{t^{-}}, t)\mathbf{Nrt}_{t^{-}}\mathbf{Icb}_{t^{-}}$
PRD	$ \left \begin{array}{c} D(\mathbf{Prf}_{t^-})R(\mathtt{CNTRL})(-1)(\mathtt{PPRD} + \mathbf{Nac}_{t^-} + \\ Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Icb}_{t^-}) \end{array} \right $	$\mathbf{Fac}_{t^{+}} = \mathbf{Nac}_{t^{-}} + I(\mathbf{Led}_{t^{-}}, t)\mathbf{NVI}_{t^{-}}\mathbf{Ied}_{t^{-}}$ $\mathbf{Fac}_{t^{+}} = \begin{cases} \mathbf{Fac}_{t^{-}} + Y(\mathbf{Led}_{t^{-}}, t)\mathbf{NVI}_{t^{-}}\mathbf{FER} & \text{if } \mathbf{FEB} = '\mathbf{N}' \\ \frac{Y(t^{FP^{-}}, t)}{Y(t^{FP^{-}}, t^{FP^{+}})}\mathbf{FER} & \text{else} \end{cases}$ $\mathbf{Led}_{t^{+}} = t$
		with $t^{FP-} = \sup t \in \vec{t}^{FP} \mid t < t_0$ $t^{FP+} = \inf t \in \vec{t}^{FP} \mid t > t_0$
TD	$\frac{D(\mathbf{Prf}_{t^-})R(\mathtt{CNTRL})(\mathtt{PTD} + \mathbf{Nac}_{t^-} + }{Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Icb}_{t^-})}$	STF_TD_PAM()
IP	$D(\mathbf{Prf}_{t-})\mathbf{Isc}_{t-}(\mathbf{Nac}_{t-}+$	STF_IP_PAM()
	$Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Icb}_{t^-})$	
		$\mathbf{N}\mathbf{v}\mathbf{l}_{t^+} = \mathbf{N}\mathbf{v}\mathbf{l}_{t^-} + \mathbf{N}\mathbf{a}\mathbf{c}_{t^-} + Y(\mathbf{L}\mathbf{e}\mathbf{d}_{t^-}, t)\mathbf{N}\mathbf{r}\mathbf{t}_{t^-}\mathbf{I}\mathbf{c}\mathbf{b}_{t^-}$ $\mathbf{N}\mathbf{a}\mathbf{c}_{t^+} = 0.0$
IPCI	POF_IPCI_PAM()	$\mathbf{Fac}_{t^+} = \begin{cases} \mathbf{Fac}_{t^-} + Y(\mathbf{Led}_{t^-}, t) \mathbf{Nvl}_{t^-} \mathbf{FER} & \text{if} \mathbf{FEB} = \mathrm{'N'} \\ \frac{Y(t^{FP^-}, t)}{Y(t^{FP^-}, t^{FP^+})} \mathbf{FER} & \text{else} \end{cases}$
		$\mathbf{Icb}_{t^+} = egin{cases} \mathbf{Icb}_{t^-} & ext{if} & ext{IPCB} eq ext{'NT'} \ \mathbf{Nvl}_{t^+} & ext{else} \end{cases}$
		$\mathbf{Led}_{t^{+}} = t$ with $t^{FP-} = \sup t \in \vec{t}^{FP} \mid t < t_{0}$
		$t^{FP+} = \inf t \in \vec{t}^{FP} \mid t > t_0$ $\mathbf{Icb}_{t^+} = \mathbf{Nvl}_{t^-}$
		$\mathbf{Nac}_{t^+} = \mathbf{Nac}_{t^-} + Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Icb}_{t^-}$
IPCB	0.0	$\mathbf{Fac}_{t^+} = \begin{cases} \mathbf{Fac}_{t^-} + Y(\mathbf{Led}_{t^-}, t) \mathbf{Nvl}_{t^-} \mathbf{FER} & \text{if} \mathbf{FEB} = \mathrm{'N'} \\ \frac{Y(t^{FP^-}, t)}{Y(t^{FP^-}, t^{FP^+})} \mathbf{FER} & \text{else} \end{cases}$
		$\mathbf{Led}_{t^{+}} = t$ with $t^{FP-} = \sup t \in \vec{t}^{FP} \mid t < t_{0}$
		$t^{FP+} = \inf t \in \vec{t}^{FP} \mid t > t_0$
	Continued on next page	· *

Event	Payoff Function	State Transition Function
		$\mathbf{Nac}_{t^+} = \mathbf{Nac}_{t^-} + Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Icb}_{t^-}$
RR	POF_RR_PAM()	$\mathbf{Fac}_{t^+} = \begin{cases} \mathbf{Fac}_{t^-} + Y(\mathbf{Led}_{t^-}, t) \mathbf{Nvl}_{t^-} \mathbf{FER} & \text{if} \mathbf{FEB} = \text{'N'} \\ \frac{Y(t^{FP}, t)}{Y(t^{FP}, t^{FP_+})} \mathbf{FER} & \text{else} \end{cases}$
		$\mathbf{Nrt}_{t^+} = \min(\max(\mathbf{Nrt}_{t^-} + \Delta r, \mathtt{RRLF}), \mathtt{RRLC})$
		$\mathbf{Led}_{t^+} = t$
		with
		$\Delta r = \min(\max(O^{rf}(\mathtt{RRMO},t)\mathtt{RRMT} + \mathtt{RRSP} - \mathbf{Nrt}_{t^-},\mathtt{RRPF}),\mathtt{RRPC})$
		$t^{FP-} = \sup t \in \vec{t}^{FP} \mid t < t_0$
		$t^{FP+} = \inf t \in \vec{t}^{FP} \mid t > t_0$ $\mathbf{Nac}_{t+} = \mathbf{Nac}_{t-} + Y(\mathbf{Led}_{t-}, t)\mathbf{Nrt}_{t-}\mathbf{Icb}_{t-}$
		$\mathbf{Nac}_{t+} = \mathbf{Nac}_{t-} + Y(\mathbf{Led}_{t-}, t)\mathbf{Nrt}_{t-}\mathbf{Icb}_{t-}$
RRF	POF_RRF_PAM()	$\mathbf{Fac}_{t^+} = \begin{cases} \mathbf{Fac}_{t^-} + Y(\mathbf{Led}_{t^-}, t) \mathbf{Nvl}_{t^-} \mathbf{FER} & \text{if } \mathbf{FEB} = \mathbf{'N'} \\ \frac{Y(t^{FP^-}, t)}{Y(t^{FP^-}, t^{FP^+})} \mathbf{FER} & \text{else} \end{cases}$
		$\mathbf{Nrt}_{t^+} = \mathtt{RRNXT}$
		$\mathbf{Led}_{t^+} = t$
		$\begin{array}{l} \text{with} \\ t^{FP-} = \sup t \in \vec{t}^{FP} \mid t < t_0 \end{array}$
		$t^{FP+} = \inf t \in \vec{t}^{FP} \mid t > t_0$ $\mathbf{Nac}_{t^+} = \mathbf{Nac}_{t^-} + Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Icb}_{t^-}$
		$\mathbf{Fac}_{t^+} = \begin{cases} \mathbf{Fac}_{t^-} + Y(\mathbf{Led}_{t^-}, t) \mathbf{Nvl}_{t^-} \mathbf{FER} & \text{if } \mathbf{FEB} = \text{'N'} \\ \frac{Y(t^{FP}-, t)}{Y(t^{FP}-, t^{FP}+)} \mathbf{FER} & \text{else} \end{cases}$
sc	POF_SC_PAM()	$\mathbf{Nsc}_{t^{+}} = \begin{cases} \mathbf{Nsc}_{t^{-}} & \text{if } \mathbf{SCEF} = [x]0[x] \\ \frac{O^{rf}(\mathbf{SCMO},t) - \mathbf{SCIED}}{\mathbf{SCIED}} & \text{else} \end{cases}$
		$\mathbf{Isc}_{t^+} = \begin{cases} \mathbf{Isc}_{t^-} & \text{if } \mathbf{SCEF} = 0[x][x] \\ \frac{O^{rf}(\mathbf{SCMO},t) - \mathbf{SCIED}}{\mathbf{SCIED}} & \text{else} \end{cases}$
		$\mathbf{Led}_{t^+} = t$
		$\begin{array}{c} \text{with} \\ t^{FP-} = \sup t \in \bar{t}^{FP} \mid t < t_0 \end{array}$
		1
		$t^{FP+} = \inf t \in \vec{t}^{FP} \mid t > t_0$ $\mathbf{Nac}_{t^+} = \mathbf{Nac}_{t^-} + Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Icb}_{t^-}$
CD	POF_CD_PAM()	$\mathbf{Fac}_{t^+} = \begin{cases} \mathbf{Fac}_{t^-} + Y(\mathbf{Led}_{t^-}, t) \mathbf{Nvl}_{t^-} \mathbf{FER} & \text{if } \mathbf{FEB} = \mathrm{'N'} \\ \frac{Y(t^{FP}-, t)}{Y(t^{FP}-, t^{FP}+)} \mathbf{FER} & \text{else} \end{cases}$
		$\mathbf{Prf}_{t^+} = \mathbf{D}$
		$\mathbf{Led}_{t^+} = t$
		$ \begin{array}{l} \text{with} \\ t^{FP-} = \sup t \in \vec{t}^{FP} \mid t < t_0 \end{array} $
		$t^{FP+} = \inf t \in \bar{t}^{FP} \mid t > t_0$

9.3. LAX: Exotic Linear Amortizer.

LAX: Contract Schedule

Event	Schedule	Comments
AD		Same as PAM
IED		Same as PAM
PR	$\begin{split} \vec{t}^{PR} &= \begin{cases} \{t_1, t_2,, t_i,\} & \text{if } \text{ARPRCL} = \varnothing \\ s_1 \cup s_2 \cup \cup s_i \cup & \text{else} \end{cases} \\ \text{with} \\ s_i &= S(\text{ARPRANX}_i, \vec{C}_i, \text{ARPRANX}_{i+1}), \ i \in \{1, 2,, \text{ ARINCDEC} \mid \} \mid \text{ARINCDEC}_i = \text{'DEC'} \end{split}$	$ \begin{aligned} & \text{with} \\ & \vec{C} = \begin{cases} \text{ARPRCL} & \text{if} \text{ ARPRCL} \mid = \text{ ARPRANX} \mid \\ \{c_1, c_2,, c_n\} & \text{else} \end{cases} \\ & \text{where} \\ & n = \text{ ARPRANX} \mid, c_k = \text{ ARPRCL}_1 \forall k \end{aligned} $

Continued from previous page

Event	Schedule	Comments
PI	$\begin{split} \vec{t}^{PI} &= \begin{cases} \{t_1, t_2,, t_i,\} & \text{if } ARPRCL = \varnothing \\ s_1 \cup s_2 \cup \cup s_i \cup & \text{else} \end{cases} \\ \text{with} \\ s_i &= S(ARPRANX_i, \vec{C}_i, ARPRANX_{i+1}), \ i \in \{1, 2,, ARINCDEC \mid \} \mid ARINCDEC_i = 'INC'' \end{split}$	$ \begin{aligned} & \text{with} \\ & \vec{C} = \begin{cases} \text{ARPRCL} & \text{if} \text{ ARPRCL} \mid = \text{ ARPRANX} \mid \\ \{c_1, c_2,, c_n\} & \text{else} \end{cases} \\ & \text{where} \\ & n = \text{ ARPRANX} \mid, c_k = \text{ ARPRCL}_1 \forall k \end{aligned} $
PRF	$ar{t}^{PRF} = exttt{ARPRANX}$	
PP		Same as PAM
PY		Same as PAM
FP		Same as PAM
PRD		Same as PAM
TD		Same as PAM
IP	$ ilde{t}^{TP} = S(ext{ARIPANX}, ext{ARIPCL}, extbf{Tmd}_{t_0})$	
IPCI		Same as PAM
IPCB		Same as LAM
RR	$ \vec{t}^{RR} = \begin{cases} \{t_1, t_2,, t_i,\} & \text{if } ARRRCL = \varnothing \\ s_1 \cup s_2 \cup \cup s_i \cup & \text{else} \end{cases} $ with $ s_i = S(ARRRANX_i, \vec{C}_i, ARRRANX_{i+1}), \ i \in \{1, 2,, ARFIXVAR \mid \} \mid ARFIXVAR_i = 'V' $	$ \begin{aligned} & \text{with} \\ & \vec{C} = \begin{cases} \text{ARRRCL} & \text{if} \text{ARRRCL} \mid = \text{ARRRANX} \mid \\ \{c_1, c_2,, c_n\} & \text{else} \end{cases} \\ & \text{where} \\ & n = \text{ARRRANX} \mid, c_k = \text{ARRRCL}_1 \forall k \end{aligned} $
SC	$\begin{split} \vec{t}^{RRF} &= \begin{cases} \{t_1, t_2,, t_i,\} & \text{if} \text{ARRRCL} = \varnothing \\ s_1 \cup s_2 \cup \cup s_i \cup & \text{else} \end{cases} \\ \text{with} \\ s_i &= S(\text{ARRRANX}_i, \vec{C}_i, \text{ARRRANX}_{i+1}), \ i \in \{1, 2,, \text{ ARFIXVAR} \mid \} \mid \text{ARFIXVAR}_i = \text{'F'} \end{split}$	$ \begin{aligned} & \text{with} \\ & \vec{C} = \begin{cases} \text{ARRRCL} & \text{if} \text{ARRRCL} \mid = \text{ARRRANX} \mid \\ \{c_1, c_2,, c_n\} & \text{else} \end{cases} \\ & \text{where} \\ & n = \text{ARRRANX} \mid, c_k = \text{ARRRCL}_1 \forall k \\ & \text{Same as PAM} \end{aligned} $
CD		Same as PAM

LAX: State Variables Initialization

State	Initialization per t_0	Comments
Tmd	$\begin{aligned} \mathbf{Tmd}_{t_0} &= \begin{cases} \texttt{MD} & \text{if} \texttt{MD} \neq \varnothing \\ \inf t > t_0 \mid N(t) = 0 & \text{else} \end{cases} \\ \text{with} \\ N(t) &= \texttt{NT} + \sum_{i=1}^{n(t)} (-1)^k \texttt{ARPRNXT}_i \mid s_i \mid \end{cases}$	$n(t) = \begin{cases} \sup k \in \mathbb{N} \mid \mathtt{ARPRANX}_k < t & \text{if} t < max(\mathtt{ARPRANX}) \\ \mid \mathtt{ARPRANX} \mid & \text{else} \end{cases}$
	<i>-</i>	$k = \begin{cases} 0 & \text{if } ARINCDEC_i = \text{'INC'} \\ 1 & \text{else} \end{cases}$
		$s_i = egin{cases} \{ \mathtt{ARPRANX}_i \} & ext{if} & \mathtt{ARPRCL} = \varnothing \ S(\mathtt{ARPRANX}_i, ec{C}_i, T_i) & ext{else} $
		$T_i = egin{cases} \mathtt{ARPRANX}_{i+1} & \mathrm{if} i < \mid \mathtt{ARPRANX} \mid \ t & \mathrm{else} \end{cases}$
		$ec{C} = egin{cases} ext{ARRRCL} & ext{if} & ext{ARRRCL} = ext{ARRRANX} \ \{c_1, c_2,, c_n\} & ext{else} \end{cases}$
Nvl		Same as PAM
Nrt		Same as PAM
Nac		Same as PAM
Fac		Same as PAM
Nsc		Same as PAM
Isc		Same as PAM
Prf		Same as PAM
Led		Same as PAM
Npr	$\mathbf{Npr}_{t_0} = egin{cases} 0.0 & \text{if} t_0 \geq \mathtt{ARPRANX}_1 \\ \mathtt{ARPRNXT}_i & \text{else} \end{cases}$	where $i = \sup k \in \mathbb{N} \mid \mathtt{ARPRANX}_k < t_0$

State	Initialization per t_0	Comments
Icb		Same as LAM

LAX: State Transition Functions and Payoff Functions

	LAX: State Transition Functions and Payoff Functions			
Event	Payoff Function	State Transition Function		
AD	POF_AD_PAM()	STF_AD_PAM()		
IED	POF_IED_PAM()	STF_IED_LAM()		
PR	POF_PR_LAM()	STF_PR_LAM()		
		$\mathbf{N}\mathbf{v}\mathbf{l}_{t^+} = \mathbf{N}\mathbf{v}\mathbf{l}_{t^-} + R(\mathtt{CNTRL})\mathbf{N}\mathbf{p}\mathbf{r}_{t^-}$		
		$\mathbf{Nac}_{t^+} = \mathbf{Nac}_{t^-} + Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Icb}_{t^-}$		
PI		$\mathbf{Fac}_{t^+} = \begin{cases} \mathbf{Fac}_{t^-} + Y(\mathbf{Led}_{t^-}, t) \mathbf{Nvl}_{t^-} \mathbf{FER} & \text{if } \mathbf{FEB} = \mathrm{'N'} \\ \frac{Y(t^{FP^-}, t)}{Y(t^{FP^-}, t^{FP^+})} \mathbf{FER} & \text{else} \end{cases}$		
		$\mathbf{Icb}_{t^+} = egin{cases} \mathbf{Icb}_{t^-} & ext{if} \mathtt{IPCB} eq '\mathrm{NT'} \ \mathbf{Nvl}_{t^+} & ext{else} \end{cases}$		
		$\mathbf{Led}_{t^+} = t$		
		with $t^{FP-} = \sup t \in \bar{t}^{FP} \mid t < t_0$		
		$t^{FP+} = \inf t \in \vec{t}^{FP} \mid t > t_0$ $\mathbf{Npr}_{t+} = \mathtt{ARPRNXT}_i$		
		$\mathbf{Nac}_{t^+} = \mathbf{Nac}_{t^-} + Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Icb}_{t^-}$		
PRF	0.0	$\mathbf{Fac}_{t+} = egin{cases} \mathbf{Fac}_{t-} + Y(\mathbf{Led}_{t-}, t) \mathbf{Nvl}_{t-} \mathtt{FER} & \mathrm{if} \mathtt{FEB} = \mathrm{'N'} \\ rac{Y(t^{FP-}, t)}{Y(t^{FP-}, t^{FP+})} \mathtt{FER} & \mathrm{else} \end{cases}$		
		$\mathbf{Icb}_{t^+} = egin{cases} \mathbf{Icb}_{t^-} & ext{if} & \mathtt{IPCB} eq ext{'NT'} \ \mathbf{Nvl}_{t^+} & ext{else} \end{cases}$		
		$\mathbf{Led}_{t^+} = t$		
		$i = \sup k \in \mathbb{N} \mid \mathtt{ARPRANX}_k = t$		
		$t = \sup_{t \in \mathbb{N}} t \in \mathbb{N} \mid \text{ARTAMA}_k = t$ $t^{FP-} = \sup_{t \in \mathbb{T}} t \in \mathbb{T}^{FP} \mid t < t_0$		
		$t = \sup t \in t t < t_0 $ $t^{FP+} = \inf t \in \bar{t}^{FP} \mid t > t_0$		
PP	POF_PP_PAM()	$t = \inf t \in t t > t_0$ $STF.PP.LAM()$		
PY	POF_PY_PAM()	STF_PY_LAM()		
FP	POF_FP_PAM()	STF_FP_LAM()		
PRD	POF_PRD_LAM()	STF_PRD_LAM()		
TD	POF_TD_LAM()	STF_TD_PAM()		
IP	POF_IP_LAM()	STF_ID_IAM()		
IPCI	POF_IPCLPAM()	STF_IP_FAM() STF_IPCI_LAM()		
IPCI	POF_IPCB_LAM()	STF JPCLLAM() STF JPCB LAM()		
псь	r Of 1F CB_LAM()	$\mathbf{Nac}_{t^+} = \mathbf{Nac}_{t^-} + Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Icb}_{t^-}$		
		$(\mathbf{Fac}_{\leftarrow} + Y(\mathbf{Led}_{\leftarrow}, t)\mathbf{Nvl}_{\leftarrow}\mathbf{FER} \text{ if } \mathbf{FEB} = '\mathbf{N}')$		
RR	POF_RR_PAM()	$\mathbf{Fac}_{t^+} = \begin{cases} \mathbf{Fac}_{t^-} + Y(\mathbf{Led}_{t^-}, t) \mathbf{Nvl}_{t^-} \mathbf{FER} & \text{if} \mathbf{FEB} = \text{'N'} \\ \frac{Y(t^{FP-}, t)}{Y(t^{FP-}, t^{FP+})} \mathbf{FER} & \text{else} \end{cases}$		
		$\mathbf{Nrt}_{t^+} = \min(\max(\mathbf{Nrt}_{t^-} + \Delta r, \mathtt{RRLF}), \mathtt{RRLC})$		
		$\mathbf{Led}_{t^+} = t$		
		with		
		$\Delta r = \min(\max(O^{rf}(\mathtt{RRMO},t)\mathtt{RRMT} + \mathtt{ARRATE}_i - \mathbf{Nrt}_{t^-},\mathtt{RRPF}),\mathtt{RRPO}_{t^-})$		
		$i = \sup k \in \mathbb{N} \mid \mathtt{ARPRANX}_k = t$		
		$t^{FP-} = \sup t \in \vec{t}^{FP} \mid t < t_0$		
		$t^{FP+} = \inf t \in \vec{t}^{FP} \mid t > t_0$		

Event	Payoff Function	State Transition Function
RRF	POF_RRF_PAM()	$\begin{aligned} \mathbf{Nac}_{t+} &= \mathbf{Nac}_{t-} + Y(\mathbf{Led}_{t-}, t) \mathbf{Nrt}_{t-} \mathbf{Icb}_{t-} \\ \mathbf{Fac}_{t+} &= \begin{cases} \mathbf{Fac}_{t-} + Y(\mathbf{Led}_{t-}, t) \mathbf{Nvl}_{t-} \mathbf{FER} & \text{if } \mathbf{FEB} = \text{'N'} \\ \frac{Y(t^{FP}-, t)}{Y(t^{FP}-, t^{FP}+)} \mathbf{FER} & \text{else} \end{cases} \\ \mathbf{Nrt}_{t+} &= \mathbf{ARRATE}_i \\ \mathbf{Led}_{t+} &= t \\ \text{with} \\ &i = \sup k \in \mathbb{N} \mid \mathbf{ARPRANX}_k = t \\ t^{FP-} &= \sup t \in \overline{t}^{FP} \mid t < t_0 \\ t^{FP+} &= \inf t \in \overline{t}^{FP} \mid t > t_0 \end{aligned}$
SC	POF_SC_PAM()	STF_SC_LAM()
CD	POF_CD_PAM()	STF_CD_LAM()

9.4. NAM: Negative Amortizer.

NAM: Contract Schedule

Event	Schedule	Comments
AD		Same as PAM
IED		Same as PAM
PR		Same as LAM
PP		Same as PAM
PY		Same as PAM
FP		Same as PAM
PRD		Same as PAM
TD		Same as PAM
IP	$ \begin{aligned} \vec{t}^{TP} &= (\vec{u}, \vec{v}) \\ \text{where} \\ \vec{u} &= \begin{cases} \varnothing & \text{if} \text{IPANX} = \varnothing \land \text{IPCL} = \varnothing \\ \varnothing & \text{if} \text{IPCED} \neq \varnothing \land \text{IPCED} \geq \text{T} \\ S(r, \text{IPCL}, T) & \text{else} \end{cases} \\ \vec{v} &= S(s, \text{PRCL}, T^{MD}) $	$r = \begin{cases} \text{IPCED} & \text{if} \text{IPCED} \neq \varnothing \\ \text{IPANX} & \text{else if} \text{IPANX} \neq \varnothing \\ \text{IED} + \text{IPCL} & \text{else if} \text{IPCL} \neq \varnothing \\ \varnothing & \text{else} \end{cases}$ $T = s - \text{PRCL}$ $s = \begin{cases} \text{IED} + \text{PRCL} & \text{if} \text{PRANX} = \varnothing \\ \text{PRANX} & \text{else} \end{cases}$
IPCI		Same as PAM
IPCB		Same as LAM
RR		Same as PAM
RRF		Same as PAM
SC		Same as PAM
CD		Same as PAM

NAM: State Variables Initialization

State	Initialization per t_0	Comments
Tmd	$\begin{aligned} \mathbf{Tmd}_{t_0} &= \begin{cases} \texttt{MD} & \text{if} \texttt{MD} \neq \varnothing \\ t^- + n \texttt{PRCL} & \text{else} \end{cases} \\ \text{with} \ n &= ceil(\frac{\texttt{NT}}{\texttt{PRNXT} - \texttt{NT}Y(t^-, t^- + \texttt{PRCL})\texttt{IPNR}}) \end{aligned}$	$t^- = \begin{cases} \texttt{PRANX} & \text{if} \texttt{PRANX} \neq \varnothing \land \texttt{PRANX} \geq \\ \texttt{IED} + \texttt{PRCL} & \text{else if} \texttt{IED} + \texttt{PRCL} \geq t_0 \\ \sup t \in t^{PR} \mid t < t_0 & \text{else} \end{cases}$
Nvl		Same as PAM
Nrt		Same as PAM
Nac		Same as PAM
Fac		Same as PAM
Nsc		Same as PAM
Isc		Same as PAM
Prf		Same as PAM
Led		Same as PAM

State	Initialization per t_0	Comments
Npr	$\mathbf{Npr}_{t_0} = R(\mathtt{CNTRL})\mathtt{PRNXT}$	
Icb		Same as LAM

NAM: State Transition Functions and Payoff Functions

Event	Payoff Function	State Transition Function
AD	POF_AD_PAM()	STF_AD_PAM()
IED	POF_IED_PAM()	STF_IED_LAM()
		$egin{aligned} \mathbf{N}\mathbf{v}\mathbf{l}_{t^+} &= \mathbf{N}\mathbf{v}\mathbf{l}_{t^-} - (\mathbf{N}\mathbf{p}\mathbf{r}_{t^-} - \mathbf{N}\mathbf{a}\mathbf{c}_{t^+}) \\ \mathbf{N}\mathbf{a}\mathbf{c}_{t^+} &= \mathbf{N}\mathbf{a}\mathbf{c}_{t^-} + Y(\mathbf{L}\mathbf{e}\mathbf{d}_{t^-}, t)\mathbf{N}\mathbf{r}\mathbf{t}_{t^-}\mathbf{I}\mathbf{c}\mathbf{b}_{t^-} \end{aligned}$
PR	$D(\mathbf{Prf}_{t^-})\mathbf{Nsc}_{t^-}(\mathbf{Npr}_{t^-} - \mathbf{Nac}_{t^-} -$	$\mathbf{Fac}_{t^+} = \begin{cases} \mathbf{Fac}_{t^-} + Y(\mathbf{Led}_{t^-}, t) \mathbf{Nvl}_{t^-} \mathbf{FER} & \text{if } \mathbf{FEB} = \mathbf{'N'} \\ \frac{Y(t^{FP^-}, t)}{Y(t^{FP^-}, t^{FP^+})} \mathbf{FER} & \text{else} \end{cases}$
	$Y(\mathbf{Led}_{t^-},t)\mathbf{Nrt}_{t^-}\mathbf{Icb}_{t^-})$	$\mathbf{Icb}_{t^+} = egin{cases} \mathbf{Icb}_{t^-} & ext{if} \mathtt{IPCB} eq \ \mathrm{NVl}_{t^+} & ext{else} \end{cases}$
		$\mathbf{Led}_{t^+} = t$
		$t^{FP+} = \inf t \in \vec{t}^{FP} \mid t > t_0$
PP	POF_PP_PAM()	STF_PP_LAM()
PY	POF_PY_PAM()	STF_PY_LAM()
FP	POF_FP_PAM()	STF_FP_LAM()
PRD	POF_PRD_LAM()	STF_PRD_LAM()
TD	POF_TD_LAM()	STF_TD_PAM()
IP	POF_IP_LAM()	STF_IP_PAM()
IPCI	POF_IPCI_PAM()	STF_IPCI_LAM()
IPCB	POF_IPCB_LAM()	STF_IPCB_LAM()
RR	POF_RR_PAM()	STF_RR_LAM()
RRF	POF_RRF_PAM()	STF_RRF_LAM()
SC	POF_SC_PAM()	STF_SC_LAM()
CD	POF_CD_PAM()	STF_CD_LAM()

9.5. ANN: Annuity.

ANN: Contract Schedule

Event	Schedule	Comments
AD		Same as PAM
IED		Same as PAM
PR		Same as LAM
PP		Same as PAM
PY		Same as PAM
FP		Same as PAM
PRD		Same as PAM
TD		Same as PAM
IP		Same as NAM
IPCI		Same as PAM
IPCB		Same as LAM
RR		Same as PAM
RRF		Same as PAM
SC		Same as PAM
CD		Same as PAM

ANN: State Variables Initialization

State	Initialization per t_0	Comments
Tmd		Same as NAM
Nvl		Same as PAM

State	Initialization per t_0	Comments
Nrt		Same as PAM
Nac		Same as PAM
Fac		Same as PAM
Nsc		Same as PAM
Isc		Same as PAM
Prf		Same as PAM
Led		Same as PAM
Npr	$\mathbf{Npr}_{t_0} = \begin{cases} R(\mathtt{CNTRL})\mathtt{PRNXT} & \text{if} \ \ \mathtt{PRNXT} \neq \varnothing \\ (\mathtt{NT} + \mathbf{Nac}_{t_0})\frac{todo}{todo} & \text{else} \end{cases}$	where $n = \vec{t} $ with $ a $ indicating the cardinality of set a
Icb		Same as LAM

ANN: State Transition Functions and Payoff Functions

Event	Payoff Function	State Transition Function
AD	POF_AD_PAM()	STF_AD_PAM()
IED	POF_IED_PAM()	STF_IED_LAM()
PR	POF_PR_NAM()	STF_PR_NAM()
PP	POF_PP_PAM()	STF_PP_LAM()
PY	POF_PY_PAM()	STF_PY_LAM()
FP	POF_FP_PAM()	STF_FP_LAM()
PRD	POF_PRD_LAM()	STF_PRD_LAM()
TD	POF_TD_LAM()	STF_TD_PAM()
IP	POF_IP_LAM()	STF_IP_PAM()
IPCI	POF_IPCI_PAM()	STF_IPCI_LAM()
IPCB	POF_IPCB_LAM()	STF_IPCB_LAM()
		$\mathbf{Nac}_{t^+} = \mathbf{Nac}_{t^-} + Y(\mathbf{Led}_{t^-}, t)\mathbf{Nrt}_{t^-}\mathbf{Icb}_{t^-}$ $\mathbf{Fac}_{t^+} = \begin{cases} \mathbf{Fac}_{t^-} + Y(\mathbf{Led}_{t^-}, t)\mathbf{Nvl}_{t^-}\mathbf{FER} & \text{if } \mathbf{FEB} = \mathrm{'N'} \\ \frac{Y(t^FP^-, t)}{Y(t^FP^-, t^FP^+)}\mathbf{FER} & \text{else} \end{cases}$
RR	POF_RR_PAM()	$egin{align*} \left(rac{ar{Y}(t^{ar{F}P}-,t^{ar{F}P})}{ar{Y}(t^{ar{F}P}-,t^{ar{F}P})} ight)^{ar{F}EK} & ext{else} \ & \mathbf{Nrt}_{t^+} = \min(\max(\mathbf{Nrt}_{t^-} + \Delta r, \mathtt{RRLF}), \mathtt{RRLC}) \ & \mathbf{Npr}_{t^+} = A(t, \mathbf{Tmd}_{t^+}, \mathbf{Nvl}_{t^+}, \mathbf{Nac}_{t^+}, \mathbf{Nrt}_{t^+}) \ & \mathbf{Nrt}_{t^+} = \mathbf{Nrt}_{t^+} = \mathbf{Nrt}_{t^+} + \mathbf{Nrt}_$
		$\begin{aligned} \mathbf{Led}_{t^+} &= t \\ \text{with} \\ &\Delta r = \min(\max(O^{rf}(\mathtt{RRMO}, t)\mathtt{RRMT} + \mathtt{RRSP} - \mathbf{Nrt}_{t^-}, \mathtt{RRPF}), \mathtt{RRPC} \\ &t^{FP^-} = \sup t \in \vec{t}^{FP} \mid t < t_0 \\ &t^{FP^+} = \inf t \in \vec{t}^{FP} \mid t > t_0 \end{aligned}$
RRF	POF_RRF_PAM()	$\begin{split} &t^{FP+} = \inf t \in \vec{t}^{FP} \mid t > t_0 \\ &\mathbf{Nac}_{t+} = \mathbf{Nac}_{t-} + Y(\mathbf{Led}_{t-}, t)\mathbf{Nrt}_{t-}\mathbf{Icb}_{t-} \\ &\mathbf{Fac}_{t+} = \begin{cases} \mathbf{Fac}_{t-} + Y(\mathbf{Led}_{t-}, t)\mathbf{Nvl}_{t-}\mathbf{FER} & \text{if } \mathbf{FEB} = \text{'N'} \\ \frac{Y(t^{FP-}, t)}{Y(t^{FP-}, t^{FP+})}\mathbf{FER} & \text{else} \end{cases} \\ &\mathbf{Nrt}_{t+} = \mathbf{RRNXT} \\ &\mathbf{Npr}_{t+} = A(t, \mathbf{Tmd}_{t+}, \mathbf{Nvl}_{t+}, \mathbf{Nac}_{t+}, \mathbf{Nrt}_{t+}) \\ &\mathbf{Led}_{t+} = t \\ & \text{with} \\ &t^{FP-} = \sup t \in \vec{t}^{FP} \mid t < t_0 \\ &t^{FP+} = \inf t \in \vec{t}^{FP} \mid t > t_0 \end{split}$
SC	POF_SC_PAM()	STF_SC_LAM()
CD	POF_CD_PAM()	STF_CD_LAM()

9.6. CLM: Call Money.

CLM: Contract Schedule

CENT CONSTACT SCHOOLIC		
Event	Schedule	Comments
AD		Same as PAM
IED		Same as PAM
PR		Same as PAM

Event	Schedule	Comments
FP		Same as PAM
IP	$t^{IP} = \mathbf{Tmd}_{t_0}$	
IPCI	$ar{t}^{ extit{IPCI}} = egin{cases} arnothing & ext{if} & ext{IPNR} = arnothing \ S(s, ext{IPCL}, \mathbf{Tmd}_{t_0}) & ext{else} \end{cases}$	$s = \begin{cases} \texttt{IPANX} & \text{if} & \texttt{IPANX} \neq \varnothing \\ \texttt{IED} + \texttt{IPCL} & \text{else} \end{cases}$
RR		Same as PAM
RRF		Same as PAM
CD		Same as PAM

CLM: State Variables Initialization

State	Initialization per t_0	Comments
Tmd	$\mathbf{Tmd}_{t_0} = egin{cases} \mathtt{MD} & ext{if} & \mathtt{MD} eq \varnothing \ s & ext{else if} & O^{ev}(\mathtt{CID}, t_0) eq \{\} \ t^{max} & ext{else} \end{cases}$	where $s = \sup t \in \tau(O^{ev}(\mathtt{CID}, t_0))$
Nvl		Same as PAM
Nrt		Same as PAM
Nac		Same as PAM
Fac		Same as PAM
Prf		Same as PAM
Led		Same as PAM

CLM: State Transition Functions and Payoff Functions

Event	Payoff Function	State Transition Function
AD	POF_AD_PAM()	STF_AD_PAM()
IED	$D(\mathbf{Prf}_{t^-})R(\mathtt{CNTRL})(-1)\mathtt{NT}$	STF_IED_PAM()
PR	POF_PR_PAM()	STF_PR_PAM()
FP	POF_FP_PAM()	STF_FP_PAM()
IP	$D(\mathbf{Prf}_{t^{-}})(\mathbf{Nac}_{t^{-}} + Y(\mathbf{Led}_{t^{-}}, t)\mathbf{Nrt}_{t^{-}}\mathbf{Nvl}_{t^{-}})$	$\mathbf{Nac}_{t^+} = 0.0$ $\mathbf{Led}_{t^+} = t$
IPCI	POF_IPCI_PAM()	STF_IPCI_PAM()
RR	POF_RR_PAM()	STF_RR_PAM()
RRF	POF_RRF_PAM()	STF_RRF_PAM()
CD	POF_CD_PAM()	STF_CD_PAM()

9.7. UMP: Undefined Maturity Profile.

UMP: Contract Schedule

Civil Contract Schedule		
Event	Schedule	Comments
AD		Same as PAM
IED		Same as PAM
PR	$ \bar{t}^{PR} = O^{ev}(\mathtt{CID}, t_0) $	
FP		Same as PAM
IPCI	$ar{t}^{ extsf{T}PCI} = egin{cases} arnothing & ext{if IPNR} = arnothing \ S(s, ext{IPCL}, \mathbf{Tmd}_{t_0}) & ext{else} \end{cases}$	$s = \begin{cases} \text{IPANX} & \text{if} & \text{IPANX} \neq \emptyset \\ \text{IED} + \text{IPCL} & \text{else} \end{cases}$
RR		Same as PAM
RRF		Same as PAM
CD		Same as PAM

UMP: State Variables Initialization

State	1 0	Comments
Tmd	$\mathbf{Tmd}_{t_0} = \begin{cases} s & \text{if } O^{ev}(\mathtt{CID}, t_0) \neq \{\} \\ t^{max} & \text{else} \end{cases}$	where $s = \sup t, t \in \tau(O^{ev}(\mathtt{CID}, t_0))$
Nvl		Same as PAM
Nrt		Same as PAM
Nac		Same as PAM
Fac		Same as PAM
Prf		Same as PAM
Led		Same as PAM

UMP: State Transition Functions and Payoff Functions

Event	Payoff Function	State Transition Function
AD	POF_AD_PAM()	STF_AD_PAM()
IED	POF_IED_CLM()	STF_IED_PAM()
PR	$f(e_t^{PR})$	$\mathbf{Nac}_{t+} = \mathbf{Nac}_{t-} + Y(\mathbf{Led}_{t-}, t)\mathbf{Nrt}_{t-}\mathbf{Nvl}_{t-}$ $\mathbf{Fac}_{t+} = \begin{cases} \mathbf{Fac}_{t-} + Y(\mathbf{Led}_{t-}, t)\mathbf{Nvl}_{t-}\mathbf{FER} & \text{if } \mathbf{FEB} = \mathrm{'N'} \\ rac{Y(t^{-}, t)}{Y(t^{-}, t^{+})}\mathbf{FER} & \text{else} \end{cases}$ $\mathbf{Nvl}_{t+} = \mathbf{Nvl}_{t-} - f(e_{t}^{PR})$ $\mathbf{Led}_{t+} = t$
FP	POF_FP_PAM()	STF_FP_PAM()
IPCI	POF_IPCI_PAM()	STF_IPCI_PAM()
RR	POF_RR_PAM()	STF_RR_PAM()
RRF	POF_RRF_PAM()	STF_RRF_PAM()
CD	POF_CD_PAM()	STF_CD_PAM()

9.8. **CSH: Cash.**

CSH: Contract Schedule

Event	Schedule	Comments
AD		Same as PAM

CSH: State Variables Initialization

State	Initialization per t_0	Comments
Nvl	$\mathbf{Nvl}_{t_0} = R(\mathtt{CNTRL})\mathtt{NT}$	
Led		Same as PAM

CSH: State Transition Functions and Payoff Functions

Event	Payoff Function	State Transition Function
AD	POF_AD_PAM()	$\mathbf{Led}_{t^+} = t$

9.9. STK: Stock.

STK: Contract Schedule

Event	Schedule	Comments
AD		Same as PAM
PRD		Same as PAM
TD		Same as PAM
$\mathrm{DV}^{(fix)}$	$t^{DV^{(fix)}} = egin{cases} arnothing & ext{if} & ext{DVNP} = arnothing \ & ext{DVANX} & ext{else} \end{cases}$	
DV	$ec{t}^{\mathcal{D}V} = egin{cases} arnothing & ext{if} & ext{DVANX} = arnothing \wedge ext{DVCL} = arnothing \ S(s, ext{DVCL}, t^{max}) & ext{else} \end{cases}$	$s = \begin{cases} \texttt{DVANX} & \text{if } \texttt{DVNP} = \varnothing \\ \texttt{DVANX} + \texttt{DVCL} & \text{else} \end{cases}$
CD		Same as PAM

STK: State Variables Initialization

State	Initialization per t_0	Comments
Prf		Same as PAM
Led		Same as PAM

STK: State Transition Functions and Payoff Functions

Event	Payoff Function	State Transition Function
AD	POF_AD_PAM()	$\mathbf{Led}_{t^+} = t$
PRD	$D(\mathbf{Prf}_{t^-})R(\mathtt{CNTRL})(-1)\mathtt{PPRD}$	$\mathbf{Led}_{t^+} = t$
TD	$D(\mathbf{Prf}_{t^-})R(\mathtt{CNTRL})\mathtt{PTD}$	$\mathbf{Led}_{t^+} = t$
$\mathrm{DV}^{(fix)}$	$D(\mathbf{Prf}_{t^-})R(\mathtt{CNTRL})\mathtt{DVNP}$	$\mathbf{Led}_{t^+} = t$
DV	$D(\mathbf{Prf}_{t^-})R(\mathtt{CNTRL})O^{rf}(\mathtt{DVMO},t)$	$\mathbf{Led}_{t^+} = t$
CD	POF_CD_PAM()	$\mathbf{Prf}_{t^+} = O^{rf}(\mathtt{LEICP}, t)$ $\mathbf{Led}_{t^+} = t$

9.10. COM: Commodity.

COM: Contract Schedule

Event	Schedule	Comments
AD		Same as PAM
PRD		Same as STK
TD		Same as STK

COM: State Variables Initialization

State	Initialization per t_0	Comments
Led		Same as STK

COM: State Transition Functions and Payoff Functions

Event	Payoff Function	State Transition Function
AD	POF_AD_PAM()	STF_AD_STK()
PRD	POF_PRD_STK()	STF_PRD_STK()
TD	POF_PRD_STK()	STF_PRD_STK()

9.11. FXOUT: Foreign Exchange Outright.

FXOUT: Contract Schedule

Event	Schedul	e		Comments
AD				Same as PAM
PRD				Same as PAM
TD				Same as PAM
STD	$t^{STD} = \langle$	Ø	if $DS = 'D'$	
SID		$igl(\mathbf{Tmd}_{t_0} igr)$	else	
$STD^{(1)}$	$t^{STD} = \langle$	Ø	if $DS = 'S'$	
510		$igl(\mathbf{Tmd}_{t_0} igr)$	else	
STD(2)	$t^{STD} = \langle$	Ø	if $DS = 'S'$	
DID.		$igl(\mathbf{Tmd}_{t_0} igr)$	else	
CD				Same as PAM

FXOUT: State Variables Initialization

State	e Initialization per t_0		Comments
Tmd	$\mathbf{Tmd}_{t_0} = \langle$	$\int MD$ if $STD = \emptyset$	
Tmd Tmd	$\mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} $	STD else	

State	Initialization per t_0	Comments
Prf		Same as PAM
Led		Same as PAM

FXOUT: State Transition Functions and Payoff Functions

Event	Payoff Function	State Transition Function
AD	POF_AD_PAM()	STF_AD_STK()
PRD	POF_PRD_STK()	STF_PRD_STK()
TD	POF_TD_STK()	STF_TD_STK()
STD	$D(\mathbf{Prf}_{t^-})R(\mathtt{CNTRL})(\mathtt{NT}-O^{rf}(i,\mathbf{Tmd}_t)\mathtt{NT2})$	$\mathbf{Led}_{t^+} = t$
	where	
	$i = concat(\mathtt{CUR2},"/",\mathtt{CUR})$	
	and $concat(x, y, z)$ indicates the string concatena-	
	tion function	
	$D(\mathbf{Prf}_{t^-})R(\mathtt{CNTRL})\mathtt{NT}$	$\mathbf{Led}_{t^+} = t$
$STD^{(2)}$	$D(\mathbf{Prf}_{t^-})R(\mathtt{CNTRL})(-1)\mathtt{NT2}$	$\mathbf{Led}_{t^+} = t$
CD	POF_CD_PAM()	STF_CD_STK()

9.12. SWPPV: Plain Vanilla Interest Rate Swap.

SWPPV: Contract Schedule

Event	Schedule	Comments
AD		Same as PAM
PRD		Same as PAM
TD		Same as PAM
IED		Same as PAM
PR		Same as PAM
IP	$ar{t}^{\mathcal{I}P} = egin{cases} arnothing & ext{if} & ext{DS} = {}^{\gamma} ext{D}^{\gamma} \ & ext{Tmd}_{t_0} & ext{else ifIPCL} = arnothing \ & S(s, ext{IPCL}, ext{Tmd}_{t_0}) & ext{else} \end{cases}$	where
	$S(s, \text{IPCL}, \mathbf{Tmd}_{t_0})$ else	$\int IPANX \qquad \text{if} IPANX \neq \emptyset$
	(1)	$s = \begin{cases} \text{IED} + \text{IPCL} & \text{else} \end{cases}$
$IP^{(fix)}$	$ \vec{t}^{\mathcal{I}P^{(fix)}} = \begin{cases} \emptyset & \text{if } DS = \mathrm{'S'} \\ \mathbf{Tmd}_{t_0} & \text{else if } IPCL = \emptyset \end{cases} $	
	$S(s, \mathtt{IPCL}, \mathbf{Tmd}_{t_0})$ else	
	$ \int \emptyset \qquad \text{if } DS = 'S' $	
$IP^{(var)}$	$ar{t}^{TP^{(var)}} = egin{cases} ar{T}\mathbf{m}\mathbf{d}_{t_0} & ext{else ifIPCL} = arnothing \end{cases}$	
	$S(s, IPCL, Tmd_{t_0})$ else	
RR	$ar{t}^{RR} = S(s, \mathtt{RRCL}, \mathbf{Tmd}_{t_0})$	where
		$s = \begin{cases} \text{RRANX} & \text{if } \text{RRANX} \neq \emptyset \end{cases}$
		S = IED + RRCL else
CD		Same as PAM

SWPPV: State Variables Initialization

State	Initialization per t_0		Comments
Tmd			Same as PAM
Nvl			Same as PAM
Nrt	$\int 0.0$ if IED $> t_0$		
INT	$\mathbf{Nrt}_{t_0} = egin{cases} 0.0 & ext{if IED} > t_0 \ ext{IPNR2} & ext{else} \end{cases}$		
Nac	IPAC IPAC	if IPAC $\neq \emptyset$	with $t^- = \sup t, t \in t^{IP}, t < t_0$
Nac	$egin{aligned} \mathbf{Nac}_{t_0} = egin{cases} \mathbf{IPAC} & \mathbf{I} \ Y(t^-, t_0) \mathbf{Nvl}_{t_0} (\mathbf{IPNR} - \mathbf{Nrt}_{t_0}) & \mathbf{i} \ \mathbf{IPNR} - \mathbf{Nrt}_{t_0} \end{pmatrix} \end{aligned}$	else	with $t = \sup t, t \in t$, $t < t_0$
Nac1	$\mathbf{Nac1}_{t_0} = Y(t^-, t_0) \mathbf{Nvl}_{t_0} \mathtt{IPNR}$		with $t^- = \sup t, t \in t^{IP}, t < t_0$
Nac2	$\mathbf{Nac2}_{t_0} = Y(t^-, t_0) \mathbf{Nvl}_{t_0} \mathbf{Nrt}_{t_0}$		with $t^- = \sup t, t \in t^{IP}, t < t_0$
Prf			Same as PAM
Led			Same as PAM

SWPPV: State Transition Functions and Payoff Functions

Event	Payoff Function State Transition Functions State Transition Function		
		$\mathbf{Nac}_{t^+} = Y(\mathbf{Led}_{t^-}, t)\mathbf{Nvl}_{t_0}(\mathtt{IPNR} - \mathbf{Nrt}_{t_0})$	
	POF_AD_PAM()	$\mathbf{Nac1}_{t^+} = Y(\mathbf{Led}_{t^-}, t)\mathbf{Nvl}_{t_0}\mathbf{IPNR}$	
AD		$\mathbf{Nac2}_{t^+} = Y(\mathbf{Led}_{t^-}, t)\mathbf{Nvl}_{t_0}\mathbf{Nrt}_{t_0}$	
		$\mathbf{Led}_{t^+} = t$	
		$\mathbf{Nvl}_{t^+} = R(\mathtt{CNTRL})\mathtt{NT}$	
		$\mathbf{Nac}_{t^+} = 0.0$	
IED		$\mathbf{Nac1}_{t^+} = 0.0$	
IED	0.0	$\mathbf{Nac2}_{t^+} = 0.0$	
		$\mathbf{Nrt}_{t^+} = \mathtt{IPNR2}$	
		$\mathbf{Led}_{t^+} = t$	
		$\mathbf{Nvl}_{t^+} = 0.0$	
PR	0.0	$\mathbf{Nrt}_{t^+} = 0.0$	
		$\mathbf{Led}_{t^+} = t$	
		$\mathbf{Nac}_{t^+} = Y(\mathbf{Led}_{t^-}, t)\mathbf{Nvl}_{t_0}(\mathbf{IPNR} - \mathbf{Nrt}_{t_0})$	
PRD	POF_PRD_STK()	$\mathbf{Nac1}_{t^+} = Y(\mathbf{Led}_{t^-}, t)\mathbf{Nvl}_{t_0}$ IPNR	
1102	1 01 11 100 100 111()	$\mathbf{Nac2}_{t^+} = Y(\mathbf{Led}_{t^-}, t)\mathbf{Nvl}_{t_0}\mathbf{Nrt}_{t_0}$	
		$\operatorname{Led}_{t^+} = t$	
	POF_TD_STK()	$\mathbf{Nvl}_{t^+} = 0.0$	
		$\mathbf{Nac}_{t+} = 0.0$	
$ _{\mathrm{TD}}$		$\mathbf{Nac1}_{t^+} = 0.0$	
		$\mathbf{Nac2}_{t^+} = 0.0$	
		$\mathbf{Nrt}_{t^+} = 0.0$	
		$\mathbf{Led}_{t^+} = t$ $\mathbf{Nac}_{t^+} = 0.0$	
IP	$D(\mathbf{Prf}_{t-})R(\mathtt{CNTRL})(\mathbf{Nac}_{t-} + Y(\mathbf{Led}_{t-}, t)(\mathtt{IPNR} - t))$	$\mathbf{Led}_{t^+} = 0.0$	
	$ \mathbf{Nrt}_{t^-})\mathbf{Nvl}_{t^-} $		
$IP^{(fix)}$	$D(\mathbf{Prf}_{t^-})R(\mathtt{CNTRL})(\mathbf{Nac1}_{t^-} +$	$\mathbf{Nac1}_{t+} = 0.0$	
	$Y(\mathbf{Led}_{t^-},t)$ IPNR $\mathbf{Nvl}_{t^-})$	$\operatorname{Led}_{t^+} = t$	
$IP^{(var)}$	$D(\mathbf{Prf}_{t^-})R(\mathtt{CNTRL})(\mathbf{Nac2}_{t^-}$	$\mathbf{Nac2}_{t^+} = 0.0$	
	$Y(\mathbf{Led}_{t^-}^{\iota},t)\mathbf{Nrt}_{t^-}\mathbf{Nvl}_{t^-})^{\iota}$	$\mathbf{Led}_{t^+} = t$	
		$\mathbf{Nac}_{t^+} = Y(\mathbf{Led}_{t^-}, t)\mathbf{Nvl}_{t_0}(\mathtt{IPNR} - \mathbf{Nrt}_{t_0})$	
		$\mathbf{Nac1}_{t^+} = Y(\mathbf{Led}_{t^-}, t)\mathbf{Nvl}_{t_0}$ IPNR	
RR	POF_RR_PAM()	$\mathbf{Nac2}_{t^+} = Y(\mathbf{Led}_{t^-}, t)\mathbf{Nvl}_{t_0}\mathbf{Nrt}_{t_0}$	
	V	$\mathbf{Nrt}_{t^+} = \mathtt{RRMLT}O^{rf}(\mathtt{RRMO}, t) + \mathtt{RRSP}$	
		$\mathbf{Led}_{t^+} = t$	
		$\mathbf{Nac}_{t^+} = Y(\mathbf{Led}_{t^-}, t)\mathbf{Nvl}_{t_0}(\mathbf{IPNR} - \mathbf{Nrt}_{t_0})$	
		$\mathbf{Nac1}_{t^+} = Y(\mathbf{Led}_{t^-}, t)\mathbf{Nvl}_{t_0}$ IPNR	
CD	POF_CD_PAM()	$\mathbf{Nac2}_{t^+} = Y(\mathbf{Led}_{t^-}, t)\mathbf{Nvl}_{t_0}\mathbf{Nrt}_{t_0}$	
	V	$\mathbf{Prf}_{t^+} = \mathrm{'D'}$	
		$\mathbf{Led}_{t^+} = t$	

9.13. **SWAPS: Swap.**

SWAPS: Contract Schedule

Event	Schedule	Comments	
AD		Same as PAM	
PRD		Same as PAM	
TD		Same as PAM	

	Schedule	Comments
k		with $ \{e_t^{k,1}\} = U^{ev}(FirstLeg, t_0 \mid \{\texttt{CNTRL} = r^{(1)}\}) $ $ \{e_s^{l,2}\} = U^{ev}(SecondLeg, t_0 \mid \{\texttt{CNTRL} = r^{(2)}\}) $ $ r^{(1)} = \begin{cases} RPA & \text{if } \texttt{CNTRL} = RFL \\ RPL & \text{else} \end{cases} $ $ r^{(2)} = \begin{cases} RPL & \text{if } \texttt{CNTRL} = RFL \\ RPA & \text{else} \end{cases} $

SWAPS: State Variables Initialization

	STILL ST STATE TAILABLES IIITIAILEATOR			
State	Initialization per t_0	Comments		
Tmd	$\mathbf{Tmd}_{t_0} = \max(U^{sv}(FirstLeg, t_0, \mathbf{Tmd}), U^{sv}(SecondLeg, t_0, \mathbf{Tmd}))$			
Nac	$egin{aligned} \mathbf{Nac}_{t_0} &= U^{sv}(FirstLeg, t_0, \mathbf{Nac} \mid \{\mathtt{CNTRL} = r^{(1)}\}) + \ U^{sv}(SecondLeg, t_0, \mathbf{Nac} \mid \{\mathtt{CNTRL} = r^{(2)}\}) \end{aligned}$	with		
	$U^{sv}(SecondLeg, t_0, \mathbf{Nac} \mid \{\mathtt{CNTRL} = r^{(2)}\})$	$r^{(1)} = \begin{cases} RPA & \text{if } CNTRL = RFL \\ RPL & \text{else} \end{cases}$		
		RPL else		
		$r^{(2)} = \begin{cases} RPL & \text{if } CNTRL = RFL \\ RPA & \text{else} \end{cases}$		
		RPA else		
Prf		Same as PAM		
Led		Same as PAM		

SWAPS: State Transition Functions and Payoff Functions

	SWAFS: State Transition Functions and Fayon Functions			
Event	Payoff Function	State Transition Function		
AD	POF_AD_PAM()	$\begin{split} \mathbf{Nac}_{t^+} &= U^{sv}(FirstLeg, t, \mathbf{Nac} \mid \{\mathtt{CNTRL} = r^{(1)}\}) \\ &+ U^{sv}(SecondLeg, t, \mathbf{Nac} \mid \{\mathtt{CNTRL} = r^{(2)}\}) \\ \mathbf{Fac}_{t^+} &= \begin{cases} \mathbf{Fac}_{t^-} + Y(\mathbf{Led}_{t^-}, t)\mathbf{Nvl}_{t^-} \mathtt{FER} & \text{if } \mathtt{FEB} = \mathtt{'N'} \\ \frac{Y(t^-, t)}{Y(t^-, t^+)} \mathtt{FER} & \text{else} \end{cases} \\ \mathbf{Led}_{t^+} &= t \end{split}$		
PRD	$\begin{split} D(\mathbf{Prf}_{t^-})((-1)\mathtt{PPRD} \\ + U^{sv}(FirstLeg, t, \mathbf{Nac} \mid \{\mathtt{CNTRL} = r^{(1)}\}) \\ + U^{sv}(SecondLeg, t, \mathbf{Nac} \mid \{\mathtt{CNTRL} = r^{(2)}\})) \end{split}$	$\begin{split} \mathbf{Nac}_{t^+} &= U^{sv}(FirstLeg, t, \mathbf{Nac} \mid \{\mathtt{CNTRL} = r^{(1)}\}) \\ &+ U^{sv}(SecondLeg, t, \mathbf{Nac} \mid \{\mathtt{CNTRL} = r^{(2)}\}) \\ \mathbf{Led}_{t^+} &= t \end{split}$		
TD	$\begin{array}{l} D(\mathbf{Prf}_{t^-})(\mathtt{PTD} \\ + U^{sv}(FirstLeg,t,\mathbf{Nac} \mid \{\mathtt{CNTRL} = r^{(1)}\}) \\ + U^{sv}(SecondLeg,t,\mathbf{Nac} \mid \{\mathtt{CNTRL} = r^{(2)}\})) \end{array}$	$\mathbf{Nac}_{t^+} = 0.0$ $\mathbf{Led}_{t^+} = t$		
$z_{ au}^{m}$	$f(x_{\tau}^m) + f(y_{\tau}^m)$	$\begin{split} \mathbf{Nac}_{t^+} &= U^{sv}(FirstLeg, t, \mathbf{Nac} \mid \{\mathtt{CNTRL} = r^{(1)}\}) \\ &+ U^{sv}(SecondLeg, t, \mathbf{Nac} \mid \{\mathtt{CNTRL} = r^{(2)}\}) \\ \mathbf{Led}_{t^+} &= t \end{split}$		

9.14. CAPFL: Cap-Floor.

CAPFL: Contract Schedule

Event	Schedule	Comments
AD		Same as PAM
PRD		Same as PAM
TD		Same as PAM

Event	Schedule	Comments
k	$\{e_t^k\} = \{x_t^k + y_s^l\}$	
	for all events $x_t^k \in U^{ev}(Child, t_0 \mid \{CNTRL = RPA\}), y_s^l \in$	
	$U^{ev}(Child, t_0 \mid \{ \texttt{CNTRL} = RPA, \texttt{RRLC} = \texttt{RRLC}, \texttt{RRLF} = \texttt{RRLF} \})$	
	with $t = s \wedge k = l = IP$. That is, any two congruent	
	events of the child-contract schedule, evaluated once with-	
	out RRLC, RRLF defined and once with the attributes defined,	
	which are of type IP are merged into a new aggregate event	
	(see payoff and state transition function below).	

CAPFL: State Variables Initialization

State	Initialization per t_0	Comments
Tmd	$\mathbf{Tmd}_{t_0} = \max(U^{sv}(Child, t_0, \mathbf{Tmd} \mid \{CNTRL = RPA\}),$	
	$U^{sv}(Child, t_0, \mathbf{Tmd} \mid \{CNTRL = RPA, RRLC = \}$	
	$\mathtt{RRLC},\mathtt{RRLF}=\mathtt{RRLF}\}))$	
Nac	$\mathbf{Nac}_{t_0} = R(\mathtt{CNTRL})abs($	
	$U^{sv}(Child,t_0,\mathbf{Nac}\mid\{\mathtt{CNTRL}=r^{(1)}\})$	
	$-U^{sv}(Child, t_0, \mathbf{Nac} \mid \{\mathtt{CNTRL} = RPA, \mathtt{RRLC} = \}$	
	$RRLC, RRLF = RRLF\}))$	
Prf		Same as PAM
Led		Same as PAM

CAPFL: State Transition Functions and Payoff Functions

Event	Payoff Function	State Transition Function
AD	POF_AD_PAM()	$\begin{aligned} \mathbf{Nac}_{t^+} &= R(\mathtt{CNTRL}) abs(U^{sv}(Child,t,\mathbf{Nac} \mid \{\mathtt{CNTRL} = RPA\}) \\ &- U^{sv}(Child,t,\mathbf{Nac} \mid \{\mathtt{CNTRL} = RPA, \\ & RRLC = \mathtt{RRLC}, RRLF = \mathtt{RRLF}\})) \\ \mathbf{Led}_{t^+} &= t \end{aligned}$
PRD	$\begin{split} D(\mathbf{Prf}_{t^-})((-1)PPRD + R(CNTRL)abs(\\ U^{sv}(Child,t,\mathbf{Nac}\mid\{CNTRL = RPA\}) - \\ U^{sv}(Child,t,\mathbf{Nac}\mid\{CNTRL = RPA,\\ RRLC = RRLC,RRLF = RRLF\}))) \end{split}$	$\begin{aligned} \mathbf{Nac}_{t^+} &= R(\mathtt{CNTRL}) abs(U^{sv}(Child,t,\mathbf{Nac} \mid \{\mathtt{CNTRL} = RPA\}) \\ &- U^{sv}(Child,t,\mathbf{Nac} \mid \{\mathtt{CNTRL} = RPA, \\ & RRLC = \mathtt{RRLC},\mathtt{RRLF} = \mathtt{RRLF}\})) \\ \mathbf{Led}_{t^+} &= t \end{aligned}$
TD	$D(\mathbf{Prf_{t^-}})(\mathtt{PTD} + \mathtt{R}(\mathtt{CNTRL})\mathtt{abs}($ $U^{sv}(Child,t,\mathbf{Nac} \mid \{\mathtt{CNTRL} = RPA\}) - $ $U^{sv}(Child,t,\mathbf{Nac} \mid \{\mathtt{CNTRL} = RPA,$ $\mathtt{RRLC} = \mathtt{RRLC},\mathtt{RRLF} = \mathtt{RRLF}\})))$	$\mathbf{Nac}_{t^+} = 0.0$ $\mathbf{Led}_{t^+} = t$
$z_{ au}^{m}$	$R(\mathtt{CNTRL})abs(f(x_{\tau}^m) - f(y_{\tau}^m))$ where $abs(u)$ defines that the absolute value of u is taken.	$\mathbf{Nac}_{t^+} = 0.0$ $\mathbf{Led}_{t^+} = t$

9.15. **OPTNS: Option.**

OPTNS: Contract Schedule

Event	Schedul	e Comments
AD		Same as PAM
PRD		Same as PAM
TD		Same as PAM
XD	$t^{XD} = MI$	
STD	$t^{STD} = \langle$	MD if $STD = \emptyset$
510	ι — \	STD else
CD		Same as PAM

OPTNS: State Variables Initialization

State	Initialization per t_0			Comments
Pos	$\mathbf{Pos}_{t_0} = \langle$	$\begin{cases} 0.0 \\ \max(S_{t_0} - \mathtt{OPS1}, 0) \\ \max(\mathtt{OPS1} - S_{t_0}, 0) \\ \max(S_{t_0} - \mathtt{OPS1}, 0) \\ + \max(\mathtt{OPS2} - S_{t_0}, 0) \end{cases}$	if $t_0 \leq \texttt{MD}$ else if $\texttt{OPTP} = \texttt{'C'}$ else if $\texttt{OPTP} = \texttt{'P'}$ else	with $S_{t_0} = O^{rf}(U^{ca}(Child, MOC), t_0)$
Prf				Same as PAM
Led				Same as PAM

OPTNS: State Transition Functions and Payoff Functions

Event	Payoff Function	State Transition Function		
			$ \begin{cases} \max(S_t - \mathtt{OPS1}, 0) \\ \max(\mathtt{OPS1} - S_t, 0) \\ \max(S_t - \mathtt{OPS1}, 0) \\ + \max(\mathtt{OPS2} - S_t, 0) \end{cases} $	if $OPTP = 'C'$
		Date	$\max(\mathtt{OPS1} - S_t, 0)$	else if $OPTP = 'P'$
AD	POF_AD_PAM()	$\mathbf{Pos}_{t^+} = \mathbf{c}$	$\max(S_t - \mathtt{OPS1}, 0)$	else
			$+\max(\mathtt{OPS2} - S_t, 0)$	
		$\mathbf{Led}_{t^+} = t$		
		with		
		$S_t = O^{rf}(t)$	$U^{ca}(Child,MOC),t)$	
PRD	$D(\mathbf{Prf}_{t^-})(-1)$ PPRD	STF_PRD.	STK()	
TD	$D(\mathbf{Prf}_{t^-})$ PTD	STF_TD_S	· ·	
			$\max(S_t - \mathtt{OPS1}, 0)$	if $OPTP = 'C'$
		$\mathbf{Pos}_{t^+} = \langle$	$\max(\mathtt{OPS1} - S_t, 0)$	else if $OPTP = P'$
XD	0.0		$\max(S_t - \mathtt{OPS1}, 0)$	else
			$ \begin{cases} \max(S_t - \mathtt{OPS1}, 0) \\ \max(\mathtt{OPS1} - S_t, 0) \\ \max(S_t - \mathtt{OPS1}, 0) \\ + \max(\mathtt{OPS2} - S_t, 0) \end{cases} $	
		$\mathbf{Led}_{t^+} = t$		
		with		
			$U^{ca}(Child, MOC), t)$	
STD	$D(\mathbf{Prf}_{t^-})R(\mathtt{CNTRL})\mathbf{Pos}_{t^-}$	$\mathbf{Pos}_{t^+} = 0.0$		
SID		$\mathbf{Led}_{t^+} = t$		
CD	POF_CD_PAM()	STF_CD_STK()		

9.16. FUTUR: Future.

FUTUR: Contract Schedule

	1 0 1 0 10 Constitute Seneration		
Event	Schedule	Comments	
AD		Same as PAM	
PRD		Same as PAM	
TD		Same as PAM	
XD		Same as OPTNS	
STD		Same as OPTNS	
CD		Same as PAM	

FUTUR: State Variables Initialization

State	Initialization per t_0	Comments
Pos	$\mathbf{Pos}_{t_0} = egin{cases} 0.0 & ext{if} t_0 \leq ext{MD} \ S_{t_0} - ext{PFUT} & ext{else} \end{cases}$	with $S_{t_0} = O^{rf}(U^{ca}(Child, MOC), t_0)$
Prf		Same as PAM
Led		Same as PAM

FUTUR: State Transition Functions and Payoff Functions

Event	Payoff Function	State Transition Function
AD	DOE AD DAM()	$\mathbf{Pos}_{t^+} = S_t - \mathtt{PFUT}$
AD	POF_AD_PAM()	$\mathbf{Led}_{t^+} = t$
		with
		$S_t = O^{rf}(U^{ca}(Child, MOC), t)$
PRD	POF_PRD_OPTNS()	STF_PRD_STK()
TD	POF_TD_OPTNS()	STF_TD_STK()
XD	POF_XD_OPTNS()	$\mathbf{Pos}_{t^+} = S_t - \mathtt{PFUT}$
AD	FOF_AD_OF INS()	$\mathbf{Led}_{t^+} = t$
		with
		$S_t = O^{rf}(U^{ca}(Child, MOC), t)$
STD	POF_STD_OPTNS()	STF_STD_OPTNS()
CD	POF_CD_PAM()	STF_CD_STK()

9.17. CEG: Credit Enhancement Guarantee.

CEG: Contract Schedule

Event	Schedule	Comments
AD		Same as PAM
PRD		Same as PAM
FP		Same as PAM
XD	$t^{XD} = \begin{cases} U^{ca}(\texttt{CECC}_1, \texttt{NPD}) & \text{if} U^{ca}(\texttt{CECC}_1, \texttt{NPD}) \neq \varnothing \\ \tau(O^{ev}(i, t_0)) & \text{else if} O^{ev}(i, t_0) \neq \varnothing \\ & & \wedge \tau(O^{ev}(i, t_0)) < \mathbf{Tmd}_{t_0} \end{cases}$	with $i = \begin{cases} ext{CECLEI} & ext{if } ext{CECLEI} eq arnothing \\ U^{ca}(ext{CECC}_1, LEICP) & ext{else} \end{cases}$
STD	$t^{STD} = t^{XD}$	
MD	$t^{MD} = \mathbf{Tmd}_{t_0}$	
CD		Same as PAM

CEG: State Variables Initialization

State	Initialization per t_0	Comments
Tmd	$\mathbf{Tmd}_{t_0} = egin{cases} ext{MD} & ext{if } ext{CECLEI} eq arnothing \ ext{max}(au(\{e_t^k\})) & ext{else} \end{cases}$	with $\{e_t^k\} = \{e_t^{k,1}\} \cup \{e_t^{k,2}\} \cup \ldots \cup \{e_t^{k,n}\}$
		$ \begin{cases} \{e_t^{k,i}\} = U^{ev}(\texttt{CECC}_i, t_0 \mid \{\texttt{CNTRL} = RPA\}) \\ n = \mid \texttt{CECC} \mid \end{cases} $
Fac	$\mathbf{Fac}_{t_0} = \begin{cases} 0.0 & \text{if } \mathbf{FER} = \varnothing \\ \mathbf{FEAC} & \text{else if } \mathbf{FEAC} \neq \varnothing \\ nY(t^-, t_0)\mathbf{FER} & \text{else if } \mathbf{FEB} = \text{'N'} \\ \frac{Y(t^{FP-}, t_0)}{Y(t^{FP-}, t^{FP+})} \times \mathbf{FER} & \text{else} \end{cases}$	with $n = \begin{cases} \text{NT} & \text{if } \text{NT} \\ \sum_{i=1}^{ CECC } U^{sv}(CECC_i, CDD, \mathbf{Nvl} \mid \{x\}) & \text{else} \end{cases}$ $x = \text{'CNTRL} = RPA'$ $t^{FP-} = \sup t \in \vec{t}^{FP} \mid t < t_0$ $t^{FP+} = \inf t \in \vec{t}^{FP} \mid t > t_0$
Pos	$\mathbf{Pos}_{t_0} = \begin{cases} 0.0 & \text{if} t_0 \geq \mathbf{Tmd}_{t_0} \\ \texttt{CECV} \times \texttt{NT} & \text{else if} \texttt{NT} \neq \varnothing \\ \texttt{CECV} \sum_{i=1}^{ \texttt{CECC} } n_i & \text{else} \end{cases}$	$ \begin{aligned} & \text{with} \\ & n_i = \begin{cases} U^{sv}(\texttt{CECC}_i, t_0, \mathbf{Nvl} \mid \{x\}) & \text{if } \texttt{CEGE} = NO \\ U^{sv}(\texttt{CECC}_i, t_0, \mathbf{Nvl} \mid \{x\}) & \text{else if } \texttt{CEGE} = NI \\ & + U^{sv}(\texttt{CECC}_i, t_0, \mathbf{Nac} \mid \{x\}) \\ & O^{rf}(U^{ca}(\texttt{CECC}_i, MOC), t_0) & \text{else} \end{cases} \\ & \text{and} \\ & x = \texttt{'CNTRL} = \texttt{RPA'} \end{aligned} $
Prf		Same as PAM
Led		Same as PAM

CEG: State Transition Functions and Payoff Functions

Event	Payoff Function	State Transition Function
		$\mathbf{Pos}_{t^+} = \begin{cases} 0.0 & \text{if} t \geq \mathbf{Tmd}_{t_0} \\ \texttt{CECV} \times \texttt{NT} & \text{else if} \texttt{NT} \neq \varnothing \\ \texttt{CECV} \sum_{i=1}^{ \texttt{CECC} } n_i & \text{else} \end{cases}$
		$\mathbf{Pos}_{t^+} = \left\{ exttt{CECV} imes exttt{NT} \qquad ext{else if} exttt{NT} eq arphi$
		$igcup_{i=1}^{ ext{CECV} } n_i ext{else}$
AD	POF_AD_PAM()	
		$\mathbf{Fac}_{t^{+}} = \begin{cases} \mathbf{Fac}_{t^{-}} + Y(\mathbf{Led}_{t^{-}}, t)\mathbf{Nvl}_{t^{-}}\mathbf{FER} & \text{if } \mathbf{FEB} = \mathbf{'N'} \\ \frac{Y(t^{FP^{-}}, t)}{Y(t^{FP^{-}}, t^{FP^{+}})}\mathbf{FER} & \text{else} \end{cases}$
		$\mathbf{Led}_{t^+} = t$
		with $ (U^{sv}(CECC; t, \mathbf{Nvl} \mid \{x\})) \text{ if } CEGE = NO $
		$U^{sv}(\text{CECC}_i, t, \mathbf{Nvl} \mid \{x\})$ else if $CEGE = NI$
		$n_i = \begin{cases} v & (GEGG_i, V, V,$
		$n_i = \begin{cases} U^{sv}(\texttt{CECC}_i, t, \mathbf{Nvl} \mid \{x\}) & \text{if } \texttt{CEGE} = NO \\ U^{sv}(\texttt{CECC}_i, t, \mathbf{Nvl} \mid \{x\}) & \text{else if } \texttt{CEGE} = NI \\ + U^{sv}(\texttt{CECC}_i, t, \mathbf{Nac} \mid \{x\}) \\ O^{rf}(U^{ca}(\texttt{CECC}_i, MOC), t) & \text{else} \end{cases}$
		((((((((((
		$n = \begin{cases} \text{NT} & \text{if } \text{NT} \neq \varnothing \\ \sum_{i=1}^{ \texttt{CECC} } U^{sv}(\texttt{CECC}_i, \texttt{CDD}, \textbf{Nvl} \mid \{x\}) & \text{else} \end{cases}$
		x = 'CNTRL = RPA'
		$t^{FP-} = \sup t \in \bar{t}^{FP} \mid t < t_0$
		$t^{FP+} = \inf t \in \overline{t}^{FP} \mid t > t_0$
PRD	POF_PRD_STK()	STF_PRD_STK()
FP		$\mathbf{Fac}_{t^+} = 0.0$
	$\mathbf{Fac}_{t^-} + nY(t^-, t)\mathbf{FER}$ else	$\mathbf{Led}_{t^+} = t$
	with $\int NT$ if $NT \neq 0$	8
	$n = \begin{cases} \text{NT} & \text{if } \text{NT} \neq \\ \sum_{i=1}^{ \text{CECC} } U^{sv}(\text{CECC}_i, \text{CDD}, \mathbf{Nvl} \mid \{x\}) & \text{else} \end{cases}$	
	$(\sum_{i=1}^{n} C^{n}(\mathbf{SDS}_{i},\mathbf{SDS},\mathbf{TVT} \mid \{a\})^{n})$	CECV × NT if NT + Ø
		$\begin{aligned} \mathbf{Pos}_{t^{+}} &= \begin{cases} \mathtt{CECV} \times \mathtt{NT} & \text{if} \mathtt{NT} \neq \varnothing \\ \mathtt{CECV} \sum_{i=1}^{ \mathtt{CECC} } n_{i} & \text{else} \end{cases} \\ \mathbf{Fac}_{t^{+}} &= \begin{cases} \mathbf{Fac}_{t^{-}} + Y(\mathbf{Led}_{t^{-}}, t) \mathbf{Nvl}_{t^{-}} \mathtt{FER} & \text{if} \mathtt{FEB} = \mathrm{'N'} \\ \frac{Y(t^{FP^{-}}, t)}{Y(t^{FP^{-}}, t^{FP^{+}})} \mathtt{FER} & \text{else} \end{cases} \end{aligned}$
XD	POF_XD_OPTNS()	(Fac. + V(Led. t)Nvl. FER if FER = 'N')
		$\mathbf{Fac}_{t^+} = \left\{ egin{array}{ccc} \mathrm{rac}_{t^-} + \mathrm{rac}_{t^-} $
		$\mathbf{Led}_{t^+} = t$ with
		$\int U^{sv}(\mathtt{CECC}_i, t, \mathbf{Nvl} \mid \{x\}) \qquad \text{if } \mathtt{CEGE} = NO$
		$\int U^{sv}(\mathtt{CECC}_i,t,\mathbf{Nvl}\mid\{x\}) \qquad \text{else if} \mathtt{CEGE}=N I$
		$n_i = \begin{cases} +U^{sv}(\texttt{CECC}_i, t, \textbf{Nac} \mid \{x\}) \end{cases}$
		$n_i = \begin{cases} U^{sv}(\texttt{CECC}_i, t, \mathbf{Nvl} \mid \{x\}) & \text{if } \texttt{CEGE} = NO \\ U^{sv}(\texttt{CECC}_i, t, \mathbf{Nvl} \mid \{x\}) & \text{else if } \texttt{CEGE} = NI \\ + U^{sv}(\texttt{CECC}_i, t, \mathbf{Nac} \mid \{x\}) \\ O^{rf}(U^{ca}(\texttt{CECC}_i, MOC), t) & \text{else} \end{cases}$
		$n = \begin{cases} \text{NT} & \text{if } \text{NT} \neq \emptyset \\ \sum_{i=1}^{ \text{CECC} } U^{sv}(\text{CECC}_i, \text{CDD}, \mathbf{Nvl} \mid \{x\}) & \text{else} \end{cases}$
		x = 'CNTRL = RPA'
		$t^{FP-} = \sup t \in \bar{t}^{FP} \mid t < t_0$
		$t^{FP+} = \inf t \in \vec{t}^{FP} \mid t > t_0$
STD	POF_STD_OPTNS()	$\begin{array}{c c} t & = \lim t \in t & t > t_0 \\ \hline \text{STF_STD_OPTNS()} \end{array}$
	V	$\mathbf{Pos}_{t^+} = 0.0$
MD	0.0	$\mathbf{Led}_{t^+} = t$
CD	POF_CD_PAM()	STF_CD_STK()

9.18. CEC: Credit Enhancement Collateral.

CEC: Contract Schedule

CEC. Constant Senedate		
Event	Schedule	Comments
AD		Same as PAM
XD		Same as CEG
STD		Same as CEG
MD		Same as CEG
CD		Same as PAM

CEC: State Variables Initialization

State	Initialization per t_0	Comments
Tmd	$\mathbf{Tmd}_{t_0} = \max(\tau(\{e_t^k\}))$	with $\{e_t^k\} = \{e_t^{k,1}\} \cup \{e_t^{k,2}\} \cup \ldots \cup \{e_t^{k,n}\}$
		$ \left \begin{array}{l} \{e_t^{k,i}\} = U^{ev}(\mathtt{CECC}_i, t_0 \mid \{\mathtt{CNTRL} = RPA\}) \end{array} \right $
		$n = \mid \mathtt{CECC} \mid$
Pos	$\mathbf{Pos}_{t_0} = egin{cases} 0.0 & ext{if} t_0 \geq \mathbf{Tmd} \\ \min\left(\sum_{i=1}^{ \mathtt{CECE} } v_i, \mathtt{CECV} \sum_{i=1}^{ \mathtt{CECC} } n_i ight) & ext{else} \end{cases}$	with $n_i = \begin{cases} U^{sv}(\texttt{CECC}_i, t_0, \mathbf{Nvl} \mid \{x\}) & \text{if } \texttt{CEGE} = NO \\ U^{sv}(\texttt{CECC}_i, t_0, \mathbf{Nvl} \mid \{x\}) & \text{else if } \texttt{CEGE} = NO \\ + U^{sv}(\texttt{CECC}_i, t_0, \mathbf{Nac} \mid \{x\}) & \\ O^{rf}(U^{ca}(\texttt{CECC}_i, MOC), t_0) & \text{else} \end{cases}$ $v_i = O^{rf}(U^{ca}(\texttt{CECE}_i, MOC), t_0)$ $x = \texttt{'CNTRL} = \texttt{RPA'}$
Prf		Same as PAM
Led		Same as PAM

CEC: State Transition Functions and Payoff Functions

Event	Payoff Function	State Transition Function
AD	POF_AD_PAM()	$\mathbf{Pos}_{t^+} = egin{cases} 0.0 & ext{if} & t \geq \mathbf{Tmd}_{t_0} \ \min\left(\sum_{i=1}^{ \mathtt{CECE} } v_i, \mathtt{CECV}\sum_{i=1}^{ \mathtt{CECC} } n_i ight) & ext{else} \end{cases}$
		$\mathbf{Led}_{t^+} = t$
		with
		$n_i = \begin{cases} U^{sv}(\texttt{CECC}_i, t, \mathbf{Nvl} \mid \{x\}) & \text{if } \texttt{CEGE} = NO \\ U^{sv}(\texttt{CECC}_i, t, \mathbf{Nvl} \mid \{x\}) & \text{else if } \texttt{CEGE} = NI \\ + U^{sv}(\texttt{CECC}_i, t, \mathbf{Nac} \mid \{x\}) \\ O^{rf}(U^{ca}(\texttt{CECC}_i, MOC), t) & \text{else} \end{cases}$
		$n_i = \begin{cases} U^{so}(\mathtt{CECC}_i, t, \mathbf{Nvl} \mid \{x\}) & \text{else if } \mathtt{CEGE} = NI \end{cases}$
		$+U^{sv}(\mathtt{CECC}_i,t,\mathbf{Nac}\mid\{x\})$
		$v_i = O^{rf}(U^{ca}(\mathtt{CECE}_i, MOC), t)$
		x = 'CNTRL = RPA'
XD	POF_XD_OPTNS()	$\mathbf{Pos}_{t^+} = egin{cases} 0.0 & ext{if} & t \geq \mathbf{Tmd} \\ \min\left(\sum_{i=1}^{ \mathtt{CECE} } v_i, \mathtt{CECV}\sum_{i=1}^{ \mathtt{CECC} } n_i ight) & ext{else} \end{cases}$
		$\mathbf{Led}_{t^+} = t$
		with
		$U^{so}(CEGC_i, t, NvI \mid \{x\}) \qquad \text{if} CEGE = NO$
		$n_i = \begin{cases} U^{sv}(\texttt{CECC}_i, t, \mathbf{Nvl} \mid \{x\}) & \text{if } \texttt{CEGE} = NO \\ U^{sv}(\texttt{CECC}_i, t, \mathbf{Nvl} \mid \{x\}) & \text{else if } \texttt{CEGE} = NI \\ + U^{sv}(\texttt{CECC}_i, t, \mathbf{Nac} \mid \{x\}) & \\ O^{rf}(U^{ca}(\texttt{CECC}_i, MOC), t) & \text{else} \end{cases}$
		$+U^{\circ\circ}(\operatorname{CECC}_i,t,\operatorname{Nac}\mid\{x\})$
		$v_i = O^{rf}(U^{ca}(\mathtt{CECE}_i, MOC), t)$
		x = 'CNTRL = RPA'
STD	POF_STD_OPTNS()	STF_STD_OPTNS()
MD	0.0	$\mathbf{Pos}_{t^+} = 0.0$
CD	DOE OD DAM()	$\operatorname{Led}_{t^+} = t$
CD	POF_CD_PAM()	STF_CD_STK()